scholarly journals Blue Light Does Not Affect Fruit Quality or Disease Development on Ripe Blueberry Fruit During Postharvest Cold Storage

Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 59
Author(s):  
Yi-Wen Wang ◽  
Helaina D. Ludwig ◽  
Harald Scherm ◽  
Marc W. van Iersel ◽  
Savithri U. Nambeesan

Blueberry fruit are perishable after harvesting due to fruit softening, water loss and susceptibility to pathogens. Light, especially blue light, increases the accumulation of anthocyanins and reduces postharvest decay in some fruits, but the effect of blue light on postharvest fruit quality attributes in blueberries is unknown. In this study, we evaluated the effect of blue light on fruit quality, anthocyanin accumulation and disease development during postharvest cold storage (2 °C–4 °C) in two experiments with southern highbush blueberry ‘Star’ and rabbiteye blueberry ‘Alapaha’. Overall, diurnal blue light did not affect postharvest fruit quality attributes, such as visual defects, fruit compression, skin puncture, total soluble solid content and titratable acidity, in the two cultivars compared with their respective controls (diurnal white light or continuous darkness). Further, there was no effect of blue light on fruit color and anthocyanin accumulation. Fruit disease incidence in ‘Star’ ranged from 19.0% to 27.3% after 21 days and in ‘Alapaha’ from 44.9% to 56.2% after 24 days in postharvest storage, followed by 4 days at room temperature, but blue light had no consistent effect on postharvest disease incidence for either cultivar. Disease progression following artificial inoculations with Alternaria tenuissima and Colletotrichum acutatum in ‘Star’ was not influenced by light treatment prior to inoculation and during fruit storage. In a separate experiment, we tested the effect of blue light on color development in ‘Farthing’, a southern highbush blueberry cultivar with fruit prone to non-uniform ripening, whereby the stem-end remains green as the rest of the fruit turns blue. Although green stem-end spots turned blue over time, there was no statistically significant effect of the blue light treatment. Overall, these data indicate that blue light does not affect fruit quality attributes or disease development in ripe blueberry fruit during postharvest storage in the conditions investigated here.

2019 ◽  
Vol 29 (3) ◽  
pp. 314-319 ◽  
Author(s):  
Jaysankar De ◽  
Aswathy Sreedharan ◽  
You Li ◽  
Alan Gutierrez ◽  
Jeffrey K. Brecht ◽  
...  

Cooling procedures used by blueberry (Vaccinium sp.) growers often may include delays up to 24 hours that can damage the fruit through rough handling and adverse temperatures, thereby potentially compromising quality and, subsequently, safety. The objectives of this experiment were to compare forced-air cooling (FAC) compared to hydrocooling without sanitizer (HW) and hydrocooling with sanitizer (HS) regarding the quality and shelf life of southern highbush blueberry [SHB (Vaccinium corymbosum)] and to determine the efficacy of these treatments for reducing Salmonella in SHB. Freshly harvested SHB that were inoculated with a five-serovar cocktail of rifampin-resistant Salmonella were rapidly chilled by FAC or hydrocooling (HW and HS) using a laboratory model system. FAC did not show any significant reduction (P > 0.05) in Salmonella or in the effects on the microbiological quality of blueberries. HW and HS reduced Salmonella by ≈2 and >4 log cfu/g SHB, respectively, on day 0. These postharvest treatments were also evaluated for their ability to help maintain fruit quality throughout a storage period of 21 days at 1 °C. Hydrocooling (both HS and HW) provided more rapid cooling than FAC. Hydrocooled blueberries showed significant weight gain (P < 0.05), whereas FAC resulted in a slight, but insignificant (P > 0.05), reduction in final weight. The results of hydrocooling, both HS and HW, shown in this study could help to extend the shelf life while maintaining or increasing the microbiological quality of fresh market blueberries. Information obtained by this study can be used for developing the best temperature management practices to maintain the postharvest safety and quality of blueberries.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 389
Author(s):  
Yang Fang ◽  
Jeffrey Williamson ◽  
Rebecca Darnell ◽  
Yuncong Li ◽  
Guodong Liu

The commercial blueberry industry in Florida has expanded significantly in both acreage and value in the past several years. The southern highbush blueberry (SHB, Vaccinium corymbosum L. interspecific hybrid) is the major blueberry type grown in Florida. The nitrogen (N) demand of young SHB differs from the northern highbush blueberry (NHB, V. corymbosum L.) and from mature blueberry plants. The objective of this study was to optimize fertigated N rates for the growth and yield of young SHB plants. One-year-old ‘Emerald’ and ‘Farthing’ plants were fertilized with 32N-0P-0K through drip irrigation at annual rates of 0, 42, 84, 168, and 336 kg N ha−1. Soil nitrate levels at multiple depths were measured along with leaf nutrient concentration, percent canopy ground cover, fruit yield and fruit quality. The results indicated that N rates had no significant effect on leaf nutrient concentrations. Greater N rates advanced bloom and harvest, increased percentage of ground cover (an indicator of canopy size), fruit yield and berry numbers per plant, but decreased mean berry diameter and weight. The soil nitrate results from both ‘Emerald’ and ‘Farthing’ revealed that the 336 kg N ha−1 treatment had a significantly greater risk for nitrate leaching than the lower N treatments in spring. The effect of N rates on fruit quality varied with cultivar and harvest season. The linear plateau regression of fruit yield and N rates indicated that the maximum yield reached at the annual N fertigation rate of 222 kg ha−1 for ‘Emerald’ and 206 kg ha−1 for ‘Farthing’.


2011 ◽  
Vol 91 (5) ◽  
pp. 853-858 ◽  
Author(s):  
Jennifer DeEll ◽  
Behrouz Ehsani-Moghaddam

DeEll, J. R. and Ehsani-Moghaddam, B. 2011. Timing of postharvest 1-methylcyclopropene treatment affects Bartlett pear quality after storage. Can. J. Plant Sci. 91: 853–858. This study investigated the effects of postharvest 1-methylcyclopropene (1-MCP) treatment timing on the ripening and physiological disorders of Bartlett pears during cold storage and subsequent shelf-life. Pears were held for 1, 3 or 7 d at 3°C after harvest and then treated with 0.3 µL L−1 1-MCP for 24 h at 3°C. Fruit quality attributes were evaluated after 4 mo of cold storage at 0.5°C, plus 1 to 11 d at 22°C. All 1-MCP treatments reduced ethylene production, as well as delayed fruit softening and yellow color development. However, the most substantial benefit of 1-MCP observed was the marked reduction in disorders, especially senescent scald and internal breakdown. The results suggest that 1-MCP treatment 3 d after harvest provided the best balance of reduced disorder development during storage and the ability of Bartlett pears to soften adequately thereafter. Fruit treated with 1-MCP at 1 d after harvest did not soften as much as those treated 3 or 7 d after harvest, while treatment after 7 d provided less control of disorders than treatment after 1 or 3 d.


Author(s):  
Omer Hafeez ◽  
Aman Ullah Malik ◽  
Muhammad Shafique Khalid ◽  
Muhammad Amin ◽  
Samina Khalid ◽  
...  

Modified atmosphere packaging (MAP) technology is gaining popularity worldwide for its potential of extending shelf life of fresh produce with better fruit quality. Effect of MAP (using Xtend® bags), was investigated on postharvest storage life and quality of mango cvs Sindhri and Sufaid Chaunsa stored at 11°C with 80-85% RH for 4 and 5 weeks respectively, in comparison with un-bagged (control) fruit. Uniform physiological mature fruit of Sindhri and Sufaid Chaunsa were harvested from a commercial mango orchard along with 4-5 cm long pedicel and were de-sapped in 0.5% lime solution (to avoid sap burn injury). Later on fruit were given cold water fungicidal dip (Sportak @ 0.5ml/L, Active Ingredient: Prochloraz) followed by hot water treatment (52°C; 5 min). After shade drying and pre-cooling (11°C; 10-12 hours), fruit were packed according to the treatment combination and stored at 11°C. Fruit of both varieties were removed after 2, 3 and 4 weeks of storage followed by ripening at 24±2°C with an additional removal after 5 weeks for Sufaid Chaunsa only. Fruit quality was evaluated for various bio-chemical, organoleptic and physical parameters at two stages of ripening (at removal day and at final ripening day). Fruit of both varieties stored in MAP exhibited better firmness and retained green colour as compared to un-bagged fruit. Quality of fruit subjected to postharvest fungicidal application and hot water treatments and stored under MAP at 11°C showed better peel colour development and less disease development. Moreover, storage durations and post storage ripening stages significantly affected fruit peel colour, textural softness and disease development. Further, cv. Sindhri showed better storage potential with lower disease incidence as compared to cv. Sufaid Chaunsa which warrants further studies on disease control aspects.


HortScience ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 136-142
Author(s):  
Marcelo A.G. Carnelossi ◽  
Edinaldo O.A. Sena ◽  
Adrian D. Berry ◽  
Steven A. Sargent

Blueberry is widely grown around the world, and the United States is the leading producer. A strategy to maintain fruit quality during commercial handling is rapid cooling using the forced-air system. Hydrocooling (HY) is an effective cooling method widely used for many crops and has potential as a cooling method for blueberry. The objective of this study was to compare the cooling efficiency of conventional forced-air cooling (FA), the current commercial method, with immersion HY alone or HY in combination with FA (HY + FA), and to determine effects on blueberry fruit quality during subsequent cold storage. ‘Emerald’ and ‘Farthing’ southern highbush blueberry were commercially harvested and packed into plastic clamshell containers. FA was accomplished by simulating commercial conditions using a small-scale unit within a cold room at 1 °C/80% relative humidity (RH) until 7/8 cooling was achieved (27 minutes). For HY, fruit in clamshells (125 g) were immersed in chlorinated ice water (200 ppm free Cl−1, pH = 7.0) and 7/8 cooling occurred in 4 minutes. For HY + FA, fruit were 7/8 hydrocooled then transferred to FA for 30 minutes to remove free water from the fruit. After the cooling treatments, clamshells were evaluated weekly for selected quality parameters during 21 days storage at 1 °C. For HY treatment, the 1/2 cooling time was 1.13 minutes for ‘Emerald’ and 1.19 minutes for ‘Farthing’, whereas for FA treatment, the 1/2 cooling times were 4.5 and 6.8 minutes, respectively. For ‘Farthing’, cooling method did not affect fruit firmness; after 21 days, there was a slight softening in fruit from all treatments. However, ‘Emerald’ fruit cooled by HY + FA were softer than those from either HY or FA after 14 days of storage. For all cooling methods ‘Emerald’ was less acidic (0.3% citric acid) and was sweeter [10.2% soluble solids content (SSC)] than ‘Farthing’ (0.6% citric acid, 9.4% SSC). There were no differences in bloom among cooling methods. Bloom ratings for ‘Emerald’ remained >4.5 (70% to 80% coverage) whereas that for ‘Farthing’ cooled by HY or HY + FA was 3.7. Anthocyanin concentration in ‘Emerald’ fruit from HY + FA cooling method decreased by 33% during 21 days of storage, whereas that for ‘Farthing’ remained constant (8.3 mg cyanidin-3-Glicoside/g) irrespective of treatment during storage. Compared with ‘Farthing’, ‘Emerald’ was more sensitive to HY, where ≈15% of fruit developed visual skin breaks (split) after 7 days storage. HY shows potential as an alternative method to rapidly and thoroughly cool southern highbush blueberries such as ‘Farthing’, thus, maintaining fruit quality, while introducing a rinsing and sanitizing treatment. HY needs to be tested on commercial cultivars to determine the incidence of fruit splitting.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1043C-1043 ◽  
Author(s):  
Elizabeth Mitcham ◽  
William Biasi ◽  
Mark Gaskell ◽  
Ben Faber ◽  
Ramiro Lobo

Blueberry fruit were harvested at commercial maturity from variety trials and shipped overnight to UC Davis. Fruit quality was evaluated upon receipt and after 6 and 20 days of cold storage at 0.5 °C in air shelf life. Firmness, external color, soluble solids, and titratable acidity were measured. Sensory evaluations were conducted by trained tasters to rate the blueberries for crispness, mealiness, sweetness, tartness, blueberry flavor, and off-flavors at harvest and again after 21 days of storage. Many of the blueberries increased in firmness during cold storage. Firmness at harvest tended to be softer in `Santa Fe' and `Jewel' and firmer in `Star'. Sensory data also found `Sharpblue' and `Southmoon' to be more firm; however the objective measurements did not agree. Overall, `Saphire' was low in sugars and acids, and `Jewell' and `Star' were high in acids. `Misty' and `Sharpblue' were consistently high in sugars and acids. Overall objective fruit quality ratings were highest for `Misty', `Sharpblue', and `Southmoon', and lowest for `Santa Fe'. Blueberry flavor was rated highest in `Jewell', `Star', and `Sharpblue', and lowest in `Santa Fe', `Saphire', `Misty', and `Emerald'. These data indicate that blueberry flavor may be closely tied to acid content, as most of the high-flavor varieties had high acid and many of the low-flavor varieties had low acid. Over 3 years, the varieties consistently rated highest for overall objective quality were `Misty' and `Southmoon'. `Star' was rated high for overall quality in 2 years and moderate in 1. `Jewell', `Star', and `Sharpblue' were rated highest in flavor. `Santa Fe' was ranked low in flavor quality in 2 out of 3 years. Selection of variety appears to have a strong influence on the sensory quality of the blueberries marketed.


Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 213-221 ◽  
Author(s):  
L. K. Mehra ◽  
D. D. MacLean ◽  
A. T. Savelle ◽  
H. Scherm

Postharvest decay, incited by various fungal pathogens, is a major concern in most blueberry production areas of the United States. Because the risk of infection is increased by fruit bruising, which in turn is increased by machine-harvesting, it has been difficult to harvest fruit from the early-maturing but soft-textured southern highbush blueberries (SHB) mechanically for the fresh market. This could change fundamentally with the recent development of SHB genotypes with crisp-textured (“crispy”) berries, i.e., fruit with qualitatively firmer flesh and/or more resistant skin. Four replicate row sections of two or three SHB genotypes having crispy fruit and three with conventional fruit were either hand- or machine-harvested at a commercial blueberry farm in northern Florida in April 2009 and May 2010. Harvested fruit were sorted, packed, and placed in cold storage (2°C) for up to 3 weeks. Average counts of aerobic bacteria, total yeasts and molds, coliforms, and Escherichia coli on fruit samples before the cold storage period were below commercial tolerance levels in most cases. In both years, natural disease incidence after cold storage was lowest for hand-harvested crispy fruit and highest for machine-harvested conventional fruit. Interestingly, machine-harvested crispy fruit had the same or lower disease incidence as hand-harvested conventional fruit. Across all treatments, natural postharvest disease incidence was inversely related to fruit firmness, with firmness values >220 g/mm associated with low disease. In separate experiments, samples from the 0-day cold storage period were inoculated at the stem end with Alternaria alternata, Botrytis cinerea, or Colletotrichum acutatum, and disease incidence was assessed after 7 days in a cold room followed by 60 to 72 h at room temperature. In response to artificial inoculation, less disease developed on crispy berries. No significant effect of harvest method was observed, except for A. alternata inoculation in 2009, when hand-harvested fruit developed a lower level of disease than machine-harvested fruit. Taken together, this study suggests that mechanical harvesting of SHB cultivars with crisp-textured berries is feasible from a postharvest pathology perspective.


Agriculture ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 13 ◽  
Author(s):  
Lisa Wasko DeVetter ◽  
Wei Qiang Yang ◽  
Fumiomi Takeda ◽  
Scott Korthuis ◽  
Changying Li

Improved blueberry mechanical harvesting (MH) equipment that maintains fresh market quality are needed due to rising costs and decreasing availability of laborers for harvesting by hand. In 2017, a modified over-the-row (OTR) blueberry harvester with experimental catch surfaces and plates designed to reduce fruit bruising was evaluated. The catch surfaces were made of neoprene (soft catch surface; SCS) or canvas (hard catch surface; HCS) and compared to hand-picked fruit (control). Early- and early/mid-season ‘Duke’ and ‘Draper’, respectively, were evaluated in Oregon, while late-season ‘Elliott’ and ‘Aurora’ were evaluated in Washington. Harvested berries were run through commercial packing lines with fresh pack out recorded and bruise incidence or fresh fruit quality evaluated during various lengths of cold storage. The fresh pack out for ‘Duke’ and ‘Draper’ were 83.5% and 73.2%, respectively, and no difference was noted between SCS and HCS. ‘Duke’ fruit firmness was highest among MH berries with SCS, but firmness decreased in storage after one week. Firmness was highest among hand harvested ‘Draper’ followed by MH with SCS. For ‘Elliott’ and ‘Aurora’, fruit firmness was the same across harvesting methods. ‘Draper’ exhibited more bruising than ‘Duke’, but bruise ratings and the incidence of bruising at ≤10% and ≤20% were similar between hand and MH ‘Draper’ with SCS after 24 h of harvest. ‘Aurora’ berries had similar bruise ratings after 24 h between hand harvesting and MH with SCS, while ‘Elliott’ showed more bruise damage by MH with both SCS and HCS than hand harvested fruit. Although our studies showed slightly lower fresh market blueberry pack outs, loss of firmness, and increased bruise damage in fruit harvested by the experimental MH system compared to hand harvested fruit, higher quality was achieved using SCS compared to HCS. We demonstrated that improved fresh market quality in northern highbush blueberry is achievable by using modified OTR harvesters with SCS and fruit removal by either hand-held pneumatic shakers or rotary drum shakers.


2019 ◽  
pp. 275-282
Author(s):  
D. Villamón ◽  
L. Palou ◽  
J. Bartual ◽  
V. Taberner ◽  
B. de la Fuente ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document