scholarly journals Effects of Fertilizer Source and Rate on Zinnia Cut Flower Production in a High Tunnel

Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 333
Author(s):  
Guihong Bi ◽  
Tongyin Li ◽  
Mengmeng Gu ◽  
William B. Evans ◽  
Mark Williams

Sustainable nutrient management in high tunnel production is critical for optimizing crop yield and quality and improving soil health. In this study, we investigated the influence of different pre-plant composts (composted broiler litter, vemicompost, and cotton gin compost) in combination with different rates of organic or conventional fertilizer on zinnia plant growth, marketable yield of cut flower stems (>30 cm), and soil nutrients in a high tunnel over two years. Results showed that in general, pre-plant compost influenced plant growth, and plants that received composted broiler litter had the highest plant growth index. However, pre-plant compost did not affect the number of marketable cut stems. Fertigation during the growing season influenced the number of marketable cut stems. Comparable rates of nitrogen, from either organic or conventional fertilizer, produced similar numbers of marketable stems, suggesting that the organic fertilizer used in this study can be used as a fertilizer source for the production of zinnia cut flowers. After two years of production under the high tunnel, soil-extractable phosphorus, sodium, zinc, and pH significantly increased, suggesting that salt accumulation should be closely monitored in response to different compost or fertilizer sources with long-term production under high tunnels.

2021 ◽  
pp. 1-10
Author(s):  
Samantha R. Nobes ◽  
Karen L. Panter ◽  
Randa Jabbour

The objective of this study was to determine best production practices for five different specialty cut flower species at an altitude of 7200 ft. Region-specific information about cut flower production is important because of unique environmental conditions. We grew five specialty cut flower species in two different growing environments: a greenhouse and a high tunnel. Flowers were grown year-round in the greenhouse and during late spring through fall in the high tunnels. We also used pinching as another production method for the potential increase in branching. The goals were to test the effects of species, growing environment, and pinching on the days from sowing to harvest, stem length, number of stems cut per plant, and marketable yield. Experiments were conducted at the University of Wyoming Laramie Research and Extension Center in Laramie, WY, to assess the potential for producing specialty cut flowers for local consumption. The species used in this study included ‘Princess Golden’ pot marigold (Calendula officinalis), ‘Lucinda Mix’ stock (Matthiola incana), ‘Double Mix’ strawflower (Helichrysum bracteatum), ‘Dara’ ornamental carrot (Daucus carota), and ‘Celway Mix’ cockscomb (Celosia argentea). Results showed significant species × environment and season interactions, indicating the importance of species and production practice selections. We successfully sold the cut flowers to the university student farm for community-supported agriculture shares and farm market sales, as well as to a local florist for use in floral arrangements. This study concluded that careful species selection for season and growing environment is essential for the successful integration of these niche cut flowers into current or future greenhouse and high-tunnel production in Wyoming.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Syahrial Abdullah

The experiments was conducted at Kasang village, district of Batang Anai, Padang Pariaman regency during June until December 2013. The objectives of this experiment was to increased lowland rice production through specific location of nutrient management (SLNM) on low potential productivity of lowland. Four packages of fertilization such as Package A, B, C and D were arranged in Randomized Completely Block Design (RCBD) with 6 replications. Result of this experiment showed that; (1) SLNM treatments were significantly affected plant growth such as tiller number and plant high. Saveral of yield components also significantly affected by SLNM treatments packages such as panicles number, number of seeds per panicle, and percentage of filled grains. SLNM package A, B, and C significantly increased grain yields such as 24.9%,  34.2%, and 29.5% respectively compred to farmer package (Package D). The low grain yield with Famer package caused insufficient nutrient supplied for plant growth and yield is due to low fertilizer application and inaccurate nutrient management. The experiment suggested that the best application of inorganic fertilizer should be followed or combined with organic fertilizer such as animal manure or compost and  the application of thus material should be in mature condition. Key Words:  rice, specific location, fertilizer


HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1796-1803 ◽  
Author(s):  
Deron Caplan ◽  
Mike Dixon ◽  
Youbin Zheng

In the expanding North American medical cannabis industry, growers lack reliable and systematically investigated information on the horticultural management of their crops, especially with regard to nutrient management and growing substrates. To evaluate organic substrates and their optimal nutrient management, five rates that supplied 57, 113, 170, 226, and 283 mg N/L of a liquid organic fertilizer (2.00N–0.87P–3.32K) were applied to container-grown plants [Cannabis sativa L. ‘WP:Med (Wappa)’] in two coir-based organic substrates. The trial was conducted in a walk-in growth chamber and the two substrates used were ABcann UNIMIX 2-HP (U2-HP) with lower container capacity (CC) and ABcann UNIMIX 2 (U2) with higher CC. U2-HP produced 11% higher floral dry weight (yield), 13% higher growth index (GI), 20% higher ∆9-tetrahydrocannabinol (THC) concentration, 57% higher THC yield (per plant), 22% higher Δ9-tetrahydrocannabidiolic acid (THCA) yield, and 20% higher cannabigerolic acid (CBGA) yield than U2. Increasing fertilizer rate led to increased growth and yield but also to a dilution of THC, THCA, and CBGA. In U2-HP, to maximize both yield and cannabinoid yield, the optimal organic fertilizer rates were those which supplied 212–261 mg N/L. For U2, the highest applied rate, that supplied 283 mg N/L, maximized yield; although lower rates delivered higher cannabinoid concentrations in dry floral material. The results on these substrates and recommended fertilizer rates can serve as a guide when using other organic fertilizers and substrates; although results may differ with cannabis variety.


2009 ◽  
Vol 19 (1) ◽  
pp. 56-60 ◽  
Author(s):  
H. Chris Wien

High tunnels are well suited for use in the production of floral crops, especially cut flowers. Through the increases in temperature afforded at both ends of the growing season, high tunnels allow earlier and later harvests than are possible in the field. During summer, rain protection and a relatively calm environment provides an ideal growing environment to cut flower crops. In U.S. Department of Agriculture (USDA) Hardiness Zones 3 through 5, the higher temperatures of a high tunnel permit culture of warm-season crops like celosia (Celosia argentea) during summer. Cut flower production allows intensive production on a small land area and provides a high level of income. For these reasons, high tunnels have become a standard part of cut flower growers' farms. Most commonly, they are single-bay structures with roll-up sides, but use of multi-bay complexes is becoming more popular for larger-scale growers. In USDA Hardiness Zones of 7 and higher, high tunnels are shaded in summer to lower interior temperatures and enhance production of shade-tolerant species. Overall, techniques of moderating temperature extremes with shading and ventilation, or use of low tunnels inside to increase minimum temperatures are important options for cut flower production. In the presentation, comparisons will be made in growth and earliness of production and yield for several cut flower species grown in the field and an adjacent high tunnel.


Author(s):  
Reginawanti Hindersah ◽  
Nadia Nuraniya Kamaluddin ◽  
Suman Samanta ◽  
Saon Banerjee ◽  
Sarita Sarkar

<p>Low nitrogen content in soil is usually overcome by chemical fertilization. After long application period, high-dose and intensive use of N fertilizers can cause ammonia volatilization and nitrates accumulation in soil. In sustainable agriculture, the use of bacterial inoculant integrated with nutrient management system has a role in soil health and productivity. Azotobacter-based biofertilizer is suggested as a chemical nitrogen fertilizer substitute or addition in crop production to improve available nutrients in the soil, provide some metabolites during plant growth, and minimize fertilizer doses. The objective of this literature reviewed paper is to discuss the role of Azotobacter in agriculture; and the prospective of Azotobacter to increase yield and substitute the chemical fertilizer in food crops production. The results revealed that mechanisms by Azotobacter in plant growth enhancement are as biofertilizer, biostimulant, and bioprotectant. Nitrogen fixation by Azotobacter is the mechanism to provide available nitrogen for uptake by roots. Azotobacter stimulates plant growth through phytohormones synthesis; indole acetic acid, cytokinins, and gibberellins are detected in the liquid culture of Azotobacter. An indirect effect of Azotobacter is exopolysaccharide production and plant protection. Inoculation of Azotobacter in the field integrated with organic matter and reduced chemical fertilizer are reported to improve plant growth and yield.</p>


HortScience ◽  
2012 ◽  
Vol 47 (9) ◽  
pp. 1265-1269 ◽  
Author(s):  
Michael A. Ortiz ◽  
Krystyna Hyrczyk ◽  
Roberto G. Lopez

The U.S. specialty cut flower market has grown over the last several years because stems of many specialty cut flower species cannot be transported long distances and therefore need to be grown regionally. High tunnel production of cut flowers is an alternative to field and greenhouse production that has several benefits. Specialty cut flower species Antirrhinum majus L. ‘Potomac Orange’ and ‘Rocket Red’, Celosia argentea L. var. cristata Kuntze ‘Chief Red’, Dahlia ×hybrida Cav. ‘Karma Thalia Dark Fuchsia’, Dianthus barbatus L. ‘Amazon Neon Cherry’, Eustoma russellianum Salisb. ‘Mariachi Blue’, Helianthus annuus L. ‘Premier Lemon’ and ‘Sunrich Yellow’, Matthiola incana (L.) W.T. Aiton ‘Katz Lavender Blue’, and Zinnia elegans Jacq. ‘Benary Giant Scarlet’ were grown in both field and high tunnel environments in the midwestern United States. High tunnel production resulted in a first week’s harvest of 44.8 (46%), 115, and 21.1 (110%) more stems for Antirrhinum ‘Rocket Red’, Dianthus, and Zinnia, respectively. Compared with field production, high tunnel production yielded a greater number of stems/m2 for Antirrhinum ‘Potomac Orange’, Celosia, Dianthus, and Zinnia and longer stems for Antirrhinum ‘Potomac Orange’ and ‘Rocket’, Eustoma, Matthiola, and Zinnia. For example, high tunnel production yielded 185 (39%) and 192 (59%) more stems/m2 and 12.6 (34%) and 8.9 (32%) cm longer stems for Mathiola and Zinnia, respectively. Other stem characteristics such as inflorescence length and flower width showed more variation among cultivars. Our results indicate that cut flower yield and/or quality of Antirrhinum ‘Rocket Red’, Dianthus, Matthiola, Zinnia, Dahlia, Eustoma, and Helianthus ‘Sunrich Yellow’ and ‘Premier Lemon’ significantly increases when produced in high tunnels located in the Midwest.


HortScience ◽  
2010 ◽  
Vol 45 (9) ◽  
pp. 1373-1377 ◽  
Author(s):  
Guihong Bi ◽  
William B. Evans ◽  
James M. Spiers ◽  
Anthony L. Witcher

Two experiments were conducted to evaluate the growth and flowering responses of greenhouse-grown French marigold (Tagetes patula L. ‘Janie Deep Orange’) to two non-composted broiler chicken litter-based organic fertilizers, 4-2-2 and 3-3-3, and one commonly used synthetic controlled-release fertilizer, 14-14-14. In both experiments, fertilizer 4-2-2 was applied at four rates of 1%, 2%, 4%, and 6% (by volume); 3-3-3 was applied at four rates of 1.34%, 2.67%, 5.34%, and 8.0% (by volume); and 14-14-14 was applied at rates of 0.99, 1.98, 3.96, and 5.94 kg·m−3. In general, substrate containing different rates and types of fertilizers had a pH within the recommended range of 5.0 to 6.5. Electrical conductivity (EC) was similar among substrates containing different rates of 14-14-14; however, EC increased with increasing fertilizer rate for substrates containing 4-2-2 and 3-3-3. Substrate EC within each treatment was generally higher earlier in the experiment. For the fertilizer rates used in these two experiments, increasing 14-14-14 fertilizer rate increased plant growth and flowering performance. However, low to intermediate rates of 4-2-2 and 3-3-3 in general produced the highest plant growth index, shoot dry weight, number of flowers per plant, total flower dry weight, and root rating. Plants grown at high rates of 4-2-2 and 3-3-3 showed symptoms associated with excessive fertilization. Plant tissue nitrogen (N), phosphorus (P), and potassium (K) concentrations increased linearly or quadratically with increasing fertilizer rates for all three fertilizers. In general, plants receiving 4-2-2 and 3-3-3 had higher concentrations of N, P, and K than plants receiving 14-14-14. Results from this study indicated that broiler litter-based 4-2-2 and 3-3-3 have the potential to be used as organic fertilizer sources for container production of marigolds in greenhouses. However, growers need to be cautious with the rate applied. Because different crops may respond differently to these natural fertilizers, it is important for growers to test any new fertilizers before incorporating them into their production practices.


HortScience ◽  
2021 ◽  
Vol 56 (10) ◽  
pp. 1206-1212
Author(s):  
Maegen Lewis ◽  
Melanie Stock ◽  
Brent Black ◽  
Dan Drost ◽  
Xin Dai

The demand for locally grown, specialty cut flowers is increasing and now includes nontraditional regions for production, such as the U.S. Intermountain West. The objective of this study was to evaluate snapdragon (Antirrhinum majus L.) as a cool season, cut flower crop in northern Utah, where the high elevation and semiarid climate result in a short growing season with strong daily temperature fluctuations. High tunnel and field production methods were trialed in North Logan, UT (41.77°N, 111.81°W, 1382 m elevation) with cultivars ‘Chantilly’, ‘Potomac’, and ‘Rocket’ in 2018 and 2019. Each year, five to six transplant timings at 3-week intervals were tested, beginning in early February in high tunnels and ending in late May in an unprotected field. Stems were harvested and graded according to quality and stem length. High tunnels advanced production by 5 to 8 weeks, whereas field harvests continued beyond the high tunnel harvests by 2 to 8 weeks. High tunnels yielded 103 to 110 total stems per m2 (65% to 89% marketability), whereas field yields were 111 to 162 total stems per m2 (34% to 58% marketability). Overall, production was the greatest with March transplant timings in the high tunnels and mid-April transplant timings in the field. ‘Chantilly’ consistently bloomed the earliest on 4 and 6 May each year, ‘Potomac’ had the highest percentage of long stem lengths, and ‘Rocket’ extended marketable stem production through July in high tunnels. Selecting optimal transplant dates in the high tunnel and field based on cultivar bloom timing maximizes marketable yields and results in a harvest window lasting 4.5 months.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 202 ◽  
Author(s):  
Leoni ◽  
Loconsole ◽  
Cristiano ◽  
Lucia

To assess the effects of a new integrated nutrient management protocol on yield and cut stem quality, root morphology, N accumulation, nitrogen utilization efficiency (NUE), and P content in tissue, a biennial (2011 and 2012) chrysanthemum cut flower cultivation was carried out. In both years, two nutrition management (CNM: conventional NM and INM: integrated NM) treatments and two Dendranthema grandiflorum (Ramat.) Kitamura cultivar (“White CV1” and “Yellow CV2”) treatments were compared. The treatments were arranged in a split-plot design with three replicates. CNM was fertilized using a recommended dose fertilization of mineral NPK; INM treatment was fertilized using a half dose (50%) of CNM plus a combined usage of N organic fertilizer, seaweed extract (Ascophyllum nodosum), and microrganism consortium (Glomus sp. and Bacillus sp.). Yield at harvest (+19%), number of leaves (+33%), leaf area (+46%), number of flower heads (+27%), and total aboveground dry weight (+40%) were significantly increased by the INM application compared to the control. In terms of the root system, the increase was evident in terms of length (+174%), volume (+167%), projected area (+166%), and surface area (+165%), tips (+175%), forks (+285%), and crossings (+464%). The greatest N accumulation, in both years, was registered by INM treatment at harvest: +94% in 2011 and +55% in 2012. Differences in the NM were evident in the NUE, which was highest in CNM (on average 162) compared to INM (on average 142). In both years the P content in above-ground chrysanthemum tissues was in the order of head > leaves > stems, which was maintained in both INM and CNM treatments. A higher yield (138 stems m−2) was obtained in “CV2 Yellow” compared to “CV1 White” (120 stems m−2). Based on our findings, applying INM to chrysanthemum improves yield, cut flower quality, and plant nutrient uptake, in an agro–environmentally sustainable way. A basic economic analysis on fertilizers, cost gross production, and takings difference obtained, was carried out.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 531a-531 ◽  
Author(s):  
Robin G. Brumfield ◽  
Burhan Ozkan ◽  
Osman Karagüzel

Thirty cut flower businesses were surveyed in 1997 to examine the production structure and main problems of export-oriented contract growing in Turkey. The survey was conducted in Antalya province, which is the center of export-oriented cut flower production in Turkey. The results of the research provided insight into how Turkish cut flower-contracted growers were managing some of the key areas of their operations. The study also provided the opportunity for growers to highlight their concerns about contract growing for export-oriented cut flower production. The survey showed that contract growers do not use specific performance indicators relevant to cut flower production. The product price received by the contract growers was determined by the export companies. These export companies receive flowers from growers mainly on consignment. After exporting the products, exporters periodically pay the grower, subtracting a commission for their services and other marketing expenses. Contract growers are essentially price takers in the transactions. The business procedure from production to price setting and marketing was not in the hands of the contract growers. Therefore, the trading risks are essentially borne by the contract growers. The main concerns raised by contract growers were the current consignment system, cost of the plant materials, and the late payment for the sold products.


Sign in / Sign up

Export Citation Format

Share Document