scholarly journals Microfluidic Portable Device for Pathogens’ Rapid SERS Detection

Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 2
Author(s):  
Nicoleta Elena Dina ◽  
Alia Colniță ◽  
Daniel Marconi ◽  
Ana Maria Raluca Gherman

So far, in some of our previous works, we have managed to rapidly (within minutes) identify and discriminate pathogens by using surface-enhanced Raman scattering (SERS) spectroscopy with a single cell sensitivity. Having a more user friendly and robust system, which could be used not only by experts, would be the next step. In order to meet our goal, we developed an experimental setup, including an in-house built microfluidic device and we optimized the SERS detection of common bacterial pathogens by using the developed device. The main components of the system are a microfluidic flow-cell coupled to a syringe pump mediated flow system and a portable Raman spectrometer for detecting the bacteria immobilized in the flow cell. Inside the microfluidic channel of the flow cell, a silver spot was generated under laser irradiation for further use as SERS active substrate for detection. The silver spot can be washed and reused for a different pathogen from one experiment to another. No specific capturing receptors are used. The total analysis time was reduced to less than 15 min. Considering the fit-for-purposes experimental parameters for detection and its easy-to-use dedicated software, this portable microfluidic device has been tested in our lab and is ready to be transferred in the research/clinical premises for further use.

2007 ◽  
Vol 79 (18) ◽  
pp. 7036-7041 ◽  
Author(s):  
Rab Wilson ◽  
Paul Monaghan ◽  
Stephen A. Bowden ◽  
John Parnell ◽  
Jonathan M. Cooper

2006 ◽  
Vol 78 (5) ◽  
pp. 1657-1664 ◽  
Author(s):  
Khanh C. Hoang ◽  
Dmitry Malakhov ◽  
William E. Momsen ◽  
Howard L. Brockman

2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1197
Author(s):  
Xiaoyu Zhao ◽  
Aonan Zhu ◽  
Yaxin Wang ◽  
Yongjun Zhang ◽  
Xiaolong Zhang

In the present study, a sunflower-like nanostructure array composed of a series of synaptic nanoparticles and nanospheres was manufactured through an efficient and low-cost colloidal lithography technique. The primary electromagnetic field contribution generated by the synaptic nanoparticles of the surface array structures was also determined by a finite-difference time-domain software to simulate the hotspots. This structure exhibited high repeatability and excellent sensitivity; hence, it was used as a surface-enhanced Raman spectroscopy (SERS) active substrate to achieve a rapid detection of ultra-low concentrations of Alpha-fetoprotein (AFP). This study demonstrates the design of a plasmonic structure with strong electromagnetic coupling, which can be used for the rapid detection of AFP concentration in clinical medicine.


2009 ◽  
Vol 140 ◽  
pp. 155-165 ◽  
Author(s):  
Bin Ren ◽  
Xiao-Bing Lian ◽  
Jian-Feng Li ◽  
Ping-Ping Fang ◽  
Qun-Ping Lai ◽  
...  

Lab on a Chip ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 1912-1922 ◽  
Author(s):  
Francesco Del Giudice ◽  
Hojjat Madadi ◽  
Massimiliano M. Villone ◽  
Gaetano D'Avino ◽  
Angela M. Cusano ◽  
...  

Deflection of magnetic beads in a microfluidic channel can be improved through viscoelastic focusing.


2014 ◽  
Vol 50 (66) ◽  
pp. 9409-9412 ◽  
Author(s):  
Sujuan Ye ◽  
Yanying Wu ◽  
Wen Zhang ◽  
Na Li ◽  
Bo Tang

A sensitive surface-enhanced Raman scattering (SERS) detection system is developed for proteins and nucleic acids based on a triple-helix molecular switch for multiple cycle signal amplification.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Hilsamar Félix-Rivera ◽  
Roxannie González ◽  
Gabriela Del Mar Rodríguez ◽  
Oliva M. Primera-Pedrozo ◽  
Carlos Ríos-Velázquez ◽  
...  

The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt) were identified by surface-enhanced Raman scattering (SERS) spectroscopy using silver (Ag) nanoparticles (NPs) reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of “hot spots”, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2508
Author(s):  
Osama Nasr ◽  
Jian-Ru Jiang ◽  
Wen-Shuo Chuang ◽  
Sheng-Wei Lee ◽  
Chih-Yen Chen

In this article, we demonstrate a facile, rapid, and practical approach to growing high-quality Cu2S nanosheets decorated with Ag nanoparticles (NPs) through the galvanic reduction method. The Ag/Cu2S nanosheets were efficiently applied to the surface-enhanced Raman scattering (SERS) and photocatalytic degradation applications. The photodegradation of RhB dye with the Ag/Cu2S nanosheets composites occurred at a rate of 2.9 times faster than that observed with the undecorated Cu2S nanosheets. Furthermore, the Ag/Cu2S nanosheets displayed highly sensitive SERS detection of organic pollutant (R6G) as low as 10−9 M. The reproducibility experiments indicated that the Ag/Cu2S nanosheets composites could be used for dual functionality in a new generation of outstandingly sensitive SERS probes for detection and stable photocatalysts.


2018 ◽  
Vol 42 (21) ◽  
pp. 17750-17755 ◽  
Author(s):  
Ruoxuan Jiang ◽  
Wei Xu ◽  
Yifang Wang ◽  
Shaoming Yu

Silver porous nanostructures with tunable porosity were fabricated as an excellent enhancing substrate for SERS detection of trace pesticide residues.


Sign in / Sign up

Export Citation Format

Share Document