scholarly journals Transformations of Phosphorus under Pressure from Simple Cubic to Simple Hexagonal Structures via Incommensurately Modulations: Electronic Origin

Proceedings ◽  
2018 ◽  
Vol 2 (14) ◽  
pp. 1111
Author(s):  
Degtyareva Valentina

The lighter group-V element phosphorus forms the As-type (hR2) structure under pressure, above 5 GPa, and at 10 GPa transforms to the simple cubic structure (cP1), similar to arsenic. Despite its low packing density, the simple cubic structure is stable in phosphorus over a very wide pressure range up to 103 GPa. On further pressure increase, the simple cubic structure transforms into a simple hexagonal structure (hP1) via a complex phase that was solved recently as incommensurately modulated. Structural transformations of phosphorus are connected with the changes of physical properties. Above 5 GPa phosphorus shows superconductivity with Tc reaching ~9.5 K at 32 GPa. The crystal structures and properties of high-pressure phases for phosphorus are discussed within the model of the Fermi sphere and Brillouin zone interactions.

Author(s):  
Valentina F. Degtyareva

A simple cubic structure with one atom in the unit cell found in compressed calcium is counterintuitive to the traditional view of a tendency towards densely packed structures with an increase in pressure. To understand this unusual transformation it is necessary to assume electron transfer from the outer core band to the valence band, and an increase of valence electron number for calcium from 2 to ∼ 3.5. This assumption is supported by the Fermi sphere–Brillouin zone interaction model that increases under compression. The recently found structure of Ca-VII with a tetragonal cell containing 32 atoms (tI32) is similar to that in the intermetallic compound In5Bi3with 3.75 valence electrons per atom. Structural relations are analyzed in terms of electronic structure resemblance. Correlations of structure and physical properties of Ca are discussed.


Vacuum ◽  
2017 ◽  
Vol 145 ◽  
pp. 123-127 ◽  
Author(s):  
Yanwu Li ◽  
Yongjun Cheng ◽  
Wenjun Sun ◽  
Yongjun Wang ◽  
Meng Dong ◽  
...  

Adsorption ◽  
2015 ◽  
Vol 21 (1-2) ◽  
pp. 53-65 ◽  
Author(s):  
Yongchen Song ◽  
Wanli Xing ◽  
Yi Zhang ◽  
Weiwei Jian ◽  
Zhaoyan Liu ◽  
...  

2015 ◽  
Vol 71 (4) ◽  
pp. 444-450 ◽  
Author(s):  
Sergey V. Gudkovskikh ◽  
Mikhail V. Kirov

A new approach to the investigation of the proton-disordered structure of clathrate hydrates is presented. This approach is based on topological crystallography. The quotient graphs were built for the unit cells of the cubic structure I and the hexagonal structure H. This is a very convenient way to represent the topology of a hydrogen-bonding network under periodic boundary conditions. The exact proton configuration statistics for the unit cells of structure I and structure H were obtained using the quotient graphs. In addition, the statistical analysis of the proton transfer along hydrogen-bonded chains was carried out.


2013 ◽  
Vol 313-314 ◽  
pp. 666-670 ◽  
Author(s):  
K.J. Suja ◽  
Bhanu Pratap Chaudhary ◽  
Rama Komaragiri

MEMS (Micro Electro Mechanical System) are usually defined as highly miniaturized devices combining both electrical and mechanical components that are fabricated using integrated circuit batch processing techniques. Pressure sensors are usually manufactured using square or circular diaphragms of constant thickness in the order of few microns. In this work, a comparison between circular diaphragm and square diaphragm indicates that square diaphragm has better perspectives. A new method for designing diaphragm of the Piezoresistive pressure sensor for linearity over a wide pressure range (approximately double) is designed, simulated and compared with existing single diaphragm design with respect to diaphragm deflection and sensor output voltage.


1991 ◽  
Vol 46 (5) ◽  
pp. 653-661 ◽  
Author(s):  
Andreas Eggert ◽  
Erwin Riedel

FeCr2O4 has been prepared under CO-CO2-atmosphere with oxygen partial pressures between 10-18 and 10-8 bar. X-Ray and Mößbauer investigations show that under higher pressures FeCr2O4 is not stoichiometric but contains Fe(III), and that corund type Cr2O3 as an additional phase has been formed. In the wide pressure range from 10-17 to 10-14 bar the contents of Fe(III) are lower than 1% of total iron, and the corund phase is negligible.


2020 ◽  
Vol 12 (14) ◽  
pp. 16691-16699 ◽  
Author(s):  
Han Byul Choi ◽  
Jinwon Oh ◽  
Youngsoo Kim ◽  
Mikhail Pyatykh ◽  
Jun Chang Yang ◽  
...  

2020 ◽  
Vol 91 (11) ◽  
pp. 113501
Author(s):  
Ante Hecimovic ◽  
Federico D’Isa ◽  
Emile Carbone ◽  
Aleksander Drenik ◽  
Ursel Fantz

Sign in / Sign up

Export Citation Format

Share Document