Transparent Pressure Sensor with High Linearity over a Wide Pressure Range for 3D Touch Screen Applications

2020 ◽  
Vol 12 (14) ◽  
pp. 16691-16699 ◽  
Author(s):  
Han Byul Choi ◽  
Jinwon Oh ◽  
Youngsoo Kim ◽  
Mikhail Pyatykh ◽  
Jun Chang Yang ◽  
...  
2015 ◽  
Vol 5 (1) ◽  
Author(s):  
He Tian ◽  
Yi Shu ◽  
Xue-Feng Wang ◽  
Mohammad Ali Mohammad ◽  
Zhi Bie ◽  
...  

2021 ◽  
Vol 11 (19) ◽  
pp. 9012
Author(s):  
Mengru Jiao ◽  
Minghao Wang ◽  
Ye Fan ◽  
Bangbang Guo ◽  
Bowen Ji ◽  
...  

In this work, a MEMS piezoresistive micro pressure sensor (1.5 × 1.5 × 0.82 mm) is designed and fabricated with SOI-based micromachining technology and assembled using anodic bonding technology. In order to optimize the linearity and sensitivity over a wide effective pressure range (0–5 MPa) and temperature range (25–125 °C), the diaphragm thickness and the insulation of piezoresistors are precisely controlled by an optimized micromachining process. The consistency of the four piezoresistors is greatly improved by optimizing the structure of the ohmic contact pads. Furthermore, the probability of piezoresistive breakdown during anodic bonding is greatly reduced by conducting the top and bottom silicon of the SOI. At room temperature, the pressure sensor with 40 µm diaphragm demonstrates reliable linearity (0.48% F.S.) and sensitivity (33.04 mV/MPa) over a wide pressure range of 0–5.0 MPa. In addition, a polyimide protection layer is fabricated on the top surface of the sensor to prevent it from corrosion by a moist marine environment. To overcome the linearity drift due to temperature variation in practice, a digital temperature compensation system is developed for the pressure sensor, which shows a maximum error of 0.43% F.S. in a temperature range of 25–125 °C.


ACS Sensors ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 481-489 ◽  
Author(s):  
Yongrok Jeong ◽  
Jaeho Park ◽  
Jinwoo Lee ◽  
Kyuyoung Kim ◽  
Inkyu Park

Vacuum ◽  
2017 ◽  
Vol 145 ◽  
pp. 123-127 ◽  
Author(s):  
Yanwu Li ◽  
Yongjun Cheng ◽  
Wenjun Sun ◽  
Yongjun Wang ◽  
Meng Dong ◽  
...  

Adsorption ◽  
2015 ◽  
Vol 21 (1-2) ◽  
pp. 53-65 ◽  
Author(s):  
Yongchen Song ◽  
Wanli Xing ◽  
Yi Zhang ◽  
Weiwei Jian ◽  
Zhaoyan Liu ◽  
...  

2013 ◽  
Vol 313-314 ◽  
pp. 666-670 ◽  
Author(s):  
K.J. Suja ◽  
Bhanu Pratap Chaudhary ◽  
Rama Komaragiri

MEMS (Micro Electro Mechanical System) are usually defined as highly miniaturized devices combining both electrical and mechanical components that are fabricated using integrated circuit batch processing techniques. Pressure sensors are usually manufactured using square or circular diaphragms of constant thickness in the order of few microns. In this work, a comparison between circular diaphragm and square diaphragm indicates that square diaphragm has better perspectives. A new method for designing diaphragm of the Piezoresistive pressure sensor for linearity over a wide pressure range (approximately double) is designed, simulated and compared with existing single diaphragm design with respect to diaphragm deflection and sensor output voltage.


1991 ◽  
Vol 46 (5) ◽  
pp. 653-661 ◽  
Author(s):  
Andreas Eggert ◽  
Erwin Riedel

FeCr2O4 has been prepared under CO-CO2-atmosphere with oxygen partial pressures between 10-18 and 10-8 bar. X-Ray and Mößbauer investigations show that under higher pressures FeCr2O4 is not stoichiometric but contains Fe(III), and that corund type Cr2O3 as an additional phase has been formed. In the wide pressure range from 10-17 to 10-14 bar the contents of Fe(III) are lower than 1% of total iron, and the corund phase is negligible.


2020 ◽  
Vol 91 (11) ◽  
pp. 113501
Author(s):  
Ante Hecimovic ◽  
Federico D’Isa ◽  
Emile Carbone ◽  
Aleksander Drenik ◽  
Ursel Fantz

Sign in / Sign up

Export Citation Format

Share Document