scholarly journals Risk Assessment and Source Identification of Toxic Metals in the Agricultural Soil around a Pb/Zn Mining and Smelting Area in Southwest China

Author(s):  
Jinnan Wu ◽  
Jian Long ◽  
Lingfei Liu ◽  
Juan Li ◽  
Hongkai Liao ◽  
...  

Mining and smelting activities are the primary sources of toxic metal pollution in China. The purpose of this study was to investigate the pollution risk and identify sources of metals in the arable soil of a Zn/Pb mining and smelting district located in Huize, in Southwest China. Topsoil (346) and profile (three) samples were collected and analyzed to determine the total concentrations of eight toxic elements (Cd, Hg, As, Pb, Cr, Cu, Zn and Ni). The results showed that the mean Cd, Hg, As, Pb, Cr, Cu, Zn and Ni concentrations were 9.07, 0.37, 25.0, 512, 88.7, 239, 1761 and 90.3 mg/kg, respectively, all of which exceeded both the Huize and Yunnan soil background levels. Overall the topsoil was quite acidic, with a mean pH of 5.51. The mean geoaccumulation index (Igeo) revealed that the pollution level was in the order of Pb > Zn > Cd > Hg > As > Ni > Cu > Cr. The ecological risk index (Ei) indicated that there were serious contamination risks for Cd and Hg, high risk for Pb, moderate risk for As, and Cd and Hg were the dominant contributors to the high combined ecological risk index (Er) with a mean parameter of 699 meaning a serious ecological risk. The Nemerow pollution index (Pn) showed that 99.1% of soil samples were highly polluted or worse. Horizontally, high concentrations of Cd, Hg, As, Pb and Zn appeared in the north and middle of the study area, while Cr, Cu and Ni showed an opposite trend. Vertically, as the depth increased, Cd, Hg, As, Pb and Zn contents declined, but Cr, Cu and Ni exhibited an increasing trend. The mobilities of the metals were in the order of Zn > Cd > Hg > As > Pb. Horizontal and vertical distribution, coupled with correlation analysis, PCA and CA suggested that Cd, Hg, As, Pb and Zn mainly came from the anthropogenic sources, whereas Cr and Ni had a lithogenic origin. The source of Cu was a combination of the presence of parent materials as well as human activities. This study provides a base for the local government to control the toxic metal pollution and restore the soil environment system and an effective method to identify the sources of the studied pollutants.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 180
Author(s):  
Arup Acharjee ◽  
Zia Ahmed ◽  
Pankaj Kumar ◽  
Rafiul Alam ◽  
M. Safiur Rahman ◽  
...  

River sediment can be used to measure the pollution level in natural water, as it serves as one of the vital environmental indicators. This study aims to assess heavy metal pollution namely Copper (Cu), Iron (Fe), Manganese (Mn), Zinc (Zn), Nickel (Ni), Lead (Pb), and Cadmium (Cd) in Surma River. Further, it compares potential ecological risk index values using Hakanson Risk Index (RI) and Monte Carlo Simulation (MCS) approach to evaluate the environmental risks caused by these heavy metals. in the study area. With obtained results, enrichment of individual heavy metals in the study area was found in the order of Ni > Pb > Cd > Mn > Cu > Zn. Also, variance in MCS index contributed by studied metals was in the order of Cd > Pb > Ni > Zn > Cu. None of the heavy metals, except Ni, showed moderate contamination of the sediment. Risk index values from RI and MCS provide valuable insights in the contamination profile of the river, indicating the studied river is currently under low ecological risk for the studied heavy metals. This study can be utilized to assess the susceptibility of the river sediment to heavy metal pollution near an urban core, and to have a better understanding of the contamination profile of a river.


Author(s):  
Ababo Tadesse ◽  
Tekleweini Gereslassie ◽  
Qiang Xu ◽  
Xiaojun Tang ◽  
Jun Wang

This study aimed to determine the concentration levels, potential sources and ecological risks of eleven trace elements, namely Cr, Fe, Co, Ni, Cu, As, Sb, Cd, Zn, Hg and Pb, in the soil from Huangpi district, Wuhan, Central China. Soil samples were collected from eighteen sites at soil depths of 1–10 and 10–20 cm and analyzed using Inductively Coupled Plasma-Mass Spectrometer ICP-MS (Thermo X SERIES 2, Scientific and Innovative Technology Co. Ltd., Beijing, China). The recorded mean concentration of the elements were in a decreasing order of Fe > Co > Cr > Ni > Pb > Cu > As > Cd > Sb > Zn > Hg. The mean concentration of trace elements, soil pH and total organic carbon (TOC) were higher at a soil depth of 1–10 cm. The obtained mean concentration of Cr, Co, As, Cd, Ni, Cu, Hg and Pb were above the soil background values of Wuhan and Hubei Province. The mean concentration values of Co, Ni and Cd, exceeded the recommended FAO (Food and Agriculture Organization)/ISRIC (International Soil Reference and Information Centre) (2004) and WHO/FAO (2001) values. Pearson’s correlation analysis illustrated that there was a strong and significant correlation between trace elements, whereas, a weak positive and negative correlation between elements and soil properties (pH and TOC). The principal component analysis (PCA) and cluster analysis (CA) result indicated that the concentration of trace elements in Huangpi soil were originated from anthropogenic sources. Potential ecological risk index (RI) of this study revealed that there is a high ecological risk of trace elements in the soil. Enrichment factor (EF) and geo-accumulation index (Igeo) of trace elements for this study indicated that the study area is strongly contaminated with Cd and Co. Generally, the finding of this research showed that Huangpi soil is contaminated.


2019 ◽  
Vol 6 (3) ◽  
pp. 151-156 ◽  
Author(s):  
Amir Hossein Baghaie ◽  
Forough Aghili

Background: Soil pollution with heavy metals seriously threatens soil quality, food safety, and humanhealth. This study was conducted to determine the soil pollution level and ecological risk assessmentof different heavy metals in agricultural soils around Nakhlak Pb-Zn mine, located in Anarak district,Nain county of Isfahan province.Methods: A total of 50 soil samples were collected from agricultural land around Nakhlak mine andanalyzed to determine the concentrations of Pb, Cd, Zn, Ni, Cu, and Mn. The geo-accumulation index(Igeo), enrichment factor (EF), and potential ecological-risk index (Er) were used to assess the level ofsoil pollution with heavy metals.Results: The mean concentrations of Pb, Cd, Zn, Ni, Cu, and Mn were 355, 2.72, 347, 26, 36, and505 mg/kg, respectively, which were higher than the background values of world soils. Based on theIgeo index, the study area was moderately to heavily contaminated with Pb and Zn, uncontaminated tomoderate contaminated with Cd and Cu, and uncontaminated with Mn and Ni. According to the EFvalues, the study soil was moderately contaminated with Mn, Ni, and Cu, significantly contaminatedwith Cd and Zn, and highly enriched with Pb. The RI values showed a moderate level of heavy metalscontamination in the study soil.Conclusion: According to the results, the ecological risk of heavy metals for ecosystem in agriculturallands around Nakhlak Pb-Zn mine is moderate. However, the contamination status should be consideredperiodically.


2021 ◽  
Author(s):  
Bingyan Jin ◽  
Jinling Wang ◽  
Wei Lou ◽  
Liren Wang ◽  
Jinlong Xu ◽  
...  

Abstract Rivers in urban environments are significant components of their ecosystems but remain under threat of pollution from unchecked discharges of industrial sewage and domestic wastewater. Such river pollution, particularly over the longer term involving heavy metals, is an issue of worldwide concern regarding risks to the ecological environment and human health. In this study, we investigate the long-term pollution characteristics of the Huafei River, an important urban river in Kaifeng, China. River sedimentary samples were analyzed, assessing the degree and ecological risk of heavy metal pollution using the geo-accumulation index and potential ecological risk index methods; whilst Pearson’s correlation, principal component, and cluster analyses were used to identify the sources of pollution. The results show that heavy metal concentrations are significantly higher than their corresponding fluvo-aquic soil background values in China, and the geo-accumulation indexes indicate, that of the 8 heavy metals identified, Hg is most prevalent, followed in sequence by Cd > Zn > Cu > Pb > Ni > As > Cr. The potential ecological risk index of the Huafei river is very high, with the potential ecological risk intensity highest in the midstream and downstream sections where it is recommended that pollution control is carried out, especially concerning Hg and Cd. Long-term sequence analysis indicates that Cu and Pb dropped sharply from 1998 to 2017, but rebounded in 2019, and that Zn shows a continuous decreasing trend. Four main sources for the heavy metal contaminants were identified: Cr, Cu, Ni, Pb, Zn and Hg derived mainly from industrial activities, traffic sources and natural sources; Cd originated mainly from industrial and agricultural activities; whilst As was mainly associated with industrial activities. It is anticipated that the findings of this study will provide theoretical references for the effective control and scientific management of heavy metal pollution in the Huafei River and its surrounding areas.


2021 ◽  
Vol 5 (2) ◽  
pp. 18-27
Author(s):  
Hayder Issa ◽  
Azad Alshatteri

The current work accomplished a comprehensive evaluation of heavy metals pollution in soil of agricultural areas from Tanjaro sub-district, Sulaimaniyah province, Kurdistan Region, NE Iraq. Ninety soil samples were collected from thirty different locations. Concentrations of 16 heavy metals were measured by inductively coupled plasma optical emission spectrometry ICP-OES. The pollution index (PI), potential ecological risk index (Er), enrichment factor (EF), and ecological risk index (RI) were used to assess the pollution in soil samples. High levels of Li and Ni, and moderate Ba, Cd, Hg, and Pb according to the results of concentration analysis, pollution index (PI), and potential ecological risk (ERI). High levels of Cd and Hg according to the results of Er. Agglomerative hierarchical clustering (AHC) and principal component analysis (PCA) suggested that heavy metals were generated from different natural and anthropogenic sources like natural weathering, fertilizer application, and transportation. Origins of Hg, Cd, Ni, and Pb are probably from activities like overuse of pesticides and fertilizers, whereas Pb could be exhausted from vehicle exhausts as well. Furthermore, spatial distributions revealed nonpoint source pollution for the studied heavy metals. The obtained results help in the remediation techniques of contaminated soils such as dilution with decontaminated soil or extraction or separation of heavy metals.


2021 ◽  
Author(s):  
yunhu hu ◽  
mu you ◽  
Guijian Liu ◽  
zhongbing dong

Abstract The concentrations of heavy metals (As, Cd, Cr, Cu, Hg, Mn, Pb and Zn) in surface soils in the area surrounding a coal-fired power plant in China were measured, the distribution characteristics of heavy metals in different wind directions were analyzed, and the pollution degree of heavy metal in soil was evaluated. The soil around the power plant is generally polluted by heavy metals, and the degree of pollution is heavy pollution and moderate pollution. The potential ecological hazard of heavy metals in soil is moderate or slight. The values of Nemerow index and potential ecological risk index are different among different directions and different distances from the power plant. Cd, Hg and As are the mainly contributors for the potential ecological risk. The results revealed that wind direction is important for the distribution of heavy metal around coal-fired power plant. The study can provide a theoretical basis for the prevention and management of soil heavy metal pollution around coal-fired power plant.


The study assessed the ecological risk and polluting load of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in surface soils within Bori Urban. The composite soil samples collected from different locations were prepared and atomic absorption spectrophotometer (AAS) was used for the analysis of the heavy metals. From the results of the analysis, the mean concentrations (mg/kg) of the heavy metals decreased in the order Cu (37.42) > Ni (34.06) > Cr (28.66) > Zn (7.75) >Pb (2.03) > Cd (0.89). The mean concentrations of Cd, Cu, and Ni were above USEPA soil guidelines and world unpolluted soil average, while those of Pb and Zn were below. The mean concentrations of the heavy metals from the study locations were all above that of the control location. The findings indicated that the urban soils of the study were loaded with heavy metals due to anthropogenic activities. The anthropogenic percentage input was in the range of 63.92 - 89.13 above 50% indicating anthropogenic origin of the heavy metals in soils of the study area. The results of ecological risk index (Er) indicated that Cd with Er (467.40) contributed up to 94.51% to the potential ecological risk index (RI) while Zn (0.78) contributed 0.16%. The heavy metals under study posed highly strongly potential ecological risk with RI value of 494.56 to the Bori urban soil due to anthropogenic activities. The ANOVA result of FCal 6.42 > [F(5.30) = 2.53, P< 0.05)] revealed significant differences between the soil sample mean values due to different anthropogenic pollution sources with different loads of heavy metals as pollutants. The Omega Squared (w2) value of 0.52 > 0.14 showed very strong interactive relationship among the heavy metals to bring about high level of ecological potential risk of the urban soils in the study area. Based on the findings, the surface soils have elevated load of heavy metals thereby posing ecological potential risk to Bori urban soils. Therefore, there should be periodic monitoring and environmental audit by relevant authorities to ensure good soil quality of Bori urban soil. Keywords: Potential ecological risk, pollution load, Bori Urban, Anthropogenic Percentage input, contamination Factor.


2019 ◽  
Vol 6 (2) ◽  
pp. 83-91
Author(s):  
Mohamad Parsi Mehr ◽  
Samar Mortazavi

Grape is a strategic product in the county of Malayer. Despite the great importance and existence of polluted resources in the vicinity of vineyards in Malayer, there are few studies conducted in this regard. To evaluate the pollution level of toxic elements in these vineyards, 20 sampling stations were selected randomly and samples of garden soil and leaves of grapevine species were collected. After the acidic digestion of the samples, the concentrations of the heavy metals were measured using atomic absorption spectrometer. Then, the indices of contamination factor (Cf), geoaccumulation index (Igeo), biological accumulation coefficient (BAC), and ecological risk index (RI) were calculated. According to the results obtained for Igeo and Cf indices, the soil in the study region was moderately contaminated with copper. However, the ecological risk index and BAC of the studied region were low. To investigate the spatial distribution of copper in the studied region, the spatial distribution map was prepared. To locate the source of copper contamination and investigate the effect of various land uses on the amount of contamination, land use map (LUM) of vineyards was generated. To this end, images were downloaded from Landsat Satellite, and after the exertion of various corrections on the images based on the supervised classification method, the LUM with agricultural, residential, vineyard, brick furnace and pasture classes was prepared. The comparison of the LUM and the copper contamination map illustrated that the copper contamination was higher in the places with urban and adobe furnace land-use types.


2021 ◽  
Author(s):  
Bingyan Jin ◽  
Jinling Wang ◽  
Wei Lou ◽  
Liren Wang ◽  
Jinlong Xu ◽  
...  

Abstract Rivers in urban environments are significant components of their ecosystems, but remain under threat of pollution from unchecked discharges of industrial sewage and domestic waste water. Such river pollution, particularly over the longer term involving heavy metals, is an issue of worldwide concern regarding risks to the ecological environment and human health. In this study, we investigate the long-term pollution characteristics of the Huafei River, an important urban river in Kaifeng, China. River sedimentary samples were analyzed, assessing the degree and ecological risk of heavy metal pollution using the geo-accumulation index and potential ecological risk index methods; whilst Pearson’s correlation, principal component, and cluster analyses were used to identify the sources of pollution. The results show that heavy metal concentrations are significantly higher than their corresponding fluvo-aquic soil background values in China, and the geo-accumulation indexes indicate that of the 8 heavy metals identified, Hg is most prevalent, followed in sequence by Cd>Zn>Cu>Pb>Ni>As>Cr. The potential ecological risk index of the Huafei river is extremely strong, with the potential ecological risk intensity highest in the midstream and downstream sections where it is recommended that pollution control is carried out, especially concerning Hg and Cd. Long-term sequence analysis indicates that Cu and Pb dropped sharply from 1998 to 2017, but rebounded in 2019, and that Zn shows a continuous decreasing trend. Four main sources for the heavy metal contaminants were identified: Cr, Cu, Ni, Pb, Zn and Hg derived mainly from industrial activities, traffic sources and natural sources; Cd originated mainly from industrial and agricultural activities; whilst As was mainly associated with industrial activities. It is anticipated that the findings of this study will provide theoretical references for the effective control and scientific management of heavy metal pollution in Huafei River and its surrounding areas.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1640
Author(s):  
Philomina Onyedikachi Peter ◽  
Azhar Rashid ◽  
Liyuan Hou ◽  
François Nkinahamira ◽  
Claude Kiki ◽  
...  

Estuaries, being the transitional zones between freshwater and marine environments, are important for protecting and rehabilitating the aquatic environments. Sediments from freshwater and marine environments were studied in Jiulong River Estuary (JRE) in different years for rare earth elements (REEs) and some environmentally important metal and metalloid elements (MMEs). The concentration of REEs ranged from 0.11 (Tm) to 296.20 mg kg−1 (Ce), while that of MMEs ranged from 0.40 (Cd) to 86,000 mg kg−1 (Al). The temporal analysis indicated an increase of both REEs and MMEs contaminants from 2012 to 2018. Fractionation of REEs and Ce and Eu anomalies indicated natural weathering, erosion processes and changes in redox chemistry at the sampling sites. Spatial structure analysis showed relatively higher levels of both REEs and MMEs in the freshwater sediments. These variations among the sampling sites indicated different land use and anthropogenic activities. The values of enrichment factor (EF) and geoaccumulation index (Igeo) indicated anthropogenic sources of accumulation, while, ecological risk assessment (Eix) and potential ecological risk index (PERI) indicated potential hazards for biota due to the accumulation of Pb, Zn and As elements.


Sign in / Sign up

Export Citation Format

Share Document