scholarly journals Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation

Author(s):  
Zongli Xie ◽  
Derrick Ng ◽  
Manh Hoang ◽  
Jianhua Zhang ◽  
Stephen Gray

Desalination by pervaporation is a membrane process that is yet to be realized for commercial application. To investigate the feasibility and viability of scaling up, a process engineering model was developed to evaluate the energy requirement based on the experimental study of a hybrid polyvinyl alcohol/maleic acid/tetraethyl orthosilicate (PVA/MA/TEOS) Pervaporation Membrane. The energy consumption includes the external heating and cooling required for the feed and permeate streams, as well as the electrical power associated with pumps for re-circulating feed and maintaining vacuum. The thermal energy requirement is significant (e.g., up to 2609 MJ/m3 of thermal energy) and is required to maintain the feed stream at 65 °C in recirculation mode. The electrical energy requirement is very small (<0.2 kWh/m3 of required at 65 °C feed temperature at steady state) with the vacuum pump contributing to the majority of the electrical energy. The energy required for the pervaporation process was also compared to other desalination processes such as Reverse Osmosis (RO), Multi-stage Flash (MSF), and Multiple Effect Distillation (MED). The electrical energy requirement for pervaporation is the lowest among these desalination technologies. However, the thermal energy needed for pervaporation is significant. Pervaporation may be attractive when the process is integrated with waste heat and heat recovery option and used in niche applications such as RO brine concentration or salt recovery.

2012 ◽  
Vol 608-609 ◽  
pp. 97-113 ◽  
Author(s):  
José Rui Camargo ◽  
Jamir Machado da Silva ◽  
Ederaldo Godoy Junior ◽  
Renan Eduardo da Silva ◽  
Luiz Eduardo Nicolini do Patrocínio Nunes ◽  
...  

All photovoltaic panel heats up when exposed to sunlight and this heating reduces the electrical power output of the same. This work presents the use of this unwanted waste heat, converting it into thermal energy directly by means of the Seebeck effect, which is the direct conversion of thermal energy into electrical energy by means of an arrangement of semiconductor materials that when exposed to temperature gradients generate electric current. In this work emphasis was placed on the influence of temperature on generation processes involved. Thus, the theoretical evaluation, it presents the mathematical models of thermoelectric and photovoltaic systems by raising the curves of voltage, current and electric power generated, and analyses the influence of temperature in each model. To obtain the simulation curves it uses MATLAB ® 5.3, taking into account the parameters of thermoelectric modules and real photovoltaic cells. In practical evaluation, a prototype was assembled containing thermoelectric module attached to the bottom of a photovoltaic panel in order to use the heat energy absorbed by the panel. The data were stored and analyzed, where we observed the influence of temperature in both systems, validating the mathematical modeling. It is the applicability of the mathematical model given the results obtained with the prototype system.


2015 ◽  
Vol 787 ◽  
pp. 782-786 ◽  
Author(s):  
R. Prakash ◽  
D. Christopher ◽  
K. Kumarrathinam

The prime objective of this paper is to present the details of a thermoelectric waste heat energy recovery system for automobiles, more specifically, the surface heat available in the silencer. The key is to directly convert the surface heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Also the other face of the TEG will remain cold. Hence the skin burn out accidents can be avoided. The experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.


2020 ◽  
Vol 190 ◽  
pp. 00032
Author(s):  
Rapha Nichita Kaikatui ◽  
Adik Putra Andika ◽  
Vinsenius Letsoin ◽  
Paulus Mangera ◽  
Damis Hardiantono ◽  
...  

Energy demand increases in line with rapid technological advances. Research on the harvesting of renewable energy continues to be done to make efforts to convert heat energy, which is very abundant in our daily environment. Thermoelectric technology is an alternative source in answering energy needs and can produce energy on a large and small scale. Thermoelectric technology works by converting heat energy into electricity directly, or from electricity to cold. This research presents an experimental study conducted to find out the thermoelectric characteristics of the TEC in the reversal function, with heating and cooling tests on each side of the TEC type thermoelectric element, carried out to obtain the voltage value as the electrical potential generated from this element. The result is thermoelectric potential to generate DC electricity but is very limited in the function of maintaining a heat source on the hot side element. This research then proposes thermal metamaterial that functions as a collector of thermal energy in the method of converting thermal energy into DC electrical energy for the application of low power consumption communication systems.


2014 ◽  
Vol 16 (37) ◽  
pp. 20120-20126 ◽  
Author(s):  
Yaniv Gelbstein ◽  
Joseph Davidow

Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for an efficient implementation of thermoelectric devices in automotive vehicles, for utilizing the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels.


2002 ◽  
Vol 20 (5) ◽  
pp. 391-399 ◽  
Author(s):  
Ayhan Demirbaş

In response to increasing electrical energy costs and the desire for better lad management, thermal storage technology has recently been developed. Storage of thermal energy in the form of sensible and latent heat has become an important aspect of energy management with the emphasis on efficient use and conservation of the waste heat and solar energy in industry and buildings. Thermal storage has been characterized as a kind of thermal battery.


2021 ◽  
Vol 61 (2) ◽  
pp. 313-323
Author(s):  
Anges A. Aminou Moussavou ◽  
Atanda K. Raji ◽  
Marco Adonis

Several strategies have been developed to enhance the performance of a solar photovoltaicthermal (PV/T) system in buildings. However, these systems are limited by the cost, complex structure and power consumed by the pump. This paper proposes an optimisation method conversion strategy that modulates the ratio of thermal to electrical energy from the photovoltaic (PV) cell, to increase the PV/T system’s performance. The design and modelling of a PV cell was developed in MATLAB/Simulink to validate the heat transfer occurring in the PV cell model, which converts the radiation (solar) into heat and electricity. A linear regression equation curve was used to define the ratio of thermal to electrical energy technique, and the behavioural patterns of various types of power (thermal and electrical) as a function of extrinsic cell resistance (Rse). The simulation results show an effective balance of the thermal and electrical power when adjusting the Rse. The strategy to modulate the ratio of thermal to electrical energy from the PV cell may optimise the PV/T system’s performance. A change of Rse might be an effective method of controlling the amount of thermal and electrical energy from the PV cell to support the PV/T system temporally, based on the energy need. The optimisation technique of the PV/T system using the PV cell is particularly useful for households since they require electricity, heating, and cooling. Applying this technique demonstrates the ability of the PV/T system to balance the energy ( thermal and electrical) produced based on the weather conditions and the user’s energy demands.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Makita R. Phillips ◽  
Gregory P. Carman

Abstract The abundance of low-grade waste heat necessitates energy harvesting devices to convert thermal energy to electrical energy. Through magnetic transduction, thermomagnetics can perform this conversion at reasonable efficiencies. Thermomagnetic materials use thermal energy to switch between magnetic and non-magnetic states and convert thermal energy into electrical energy. In this study, we numerically analyzed an active thermomagnetic device for thermal energy harvesting composed of gadolinium (Gd) and neodymium iron boron (NdFeB). A parametric study to determine the device efficiency was conducted by varying the gap distance, heat source temperature, and Gd thickness. Furthermore, the effect of the thermal conductance and applied field was also evaluated. It was found that the relative efficiency for smaller gap distances ranges from ∼15% to 28%; the largest allowable volume of Gd should be used and higher applied field leads to higher efficiencies.


2012 ◽  
Vol 4 (1) ◽  
pp. 14-19
Author(s):  
Valdi Rizki Yandri

Energy has important meaning in social and economics achievement to continously development and support to national economics activities. Energy consumption in Indonesia increases rapidly parallel with economics engagement and people growth. To supply energy requirement, renewable energy source should be developed. Renewable energy potency like solar energy hasn’t been used for big scale although Indonesia has big energy potency. Indonesia be included on tropical area which is exposed sun radiance almost year. It means solar energy has good prospects to be developed in Indonesia. Solar energy is one kind of energy which is gotten by converting sun calor energy to another type of energy. Solar energy can be used in form solar cell for electrical power plant. The utilization of solar cell can help people who lives on isolated area which is far from electrical network to use electrical energy.


Author(s):  
G. Holldorff ◽  
W. Malewski

Cogeneration means the simultaneous generation of different forms of energy from fossile fuels: Energy as high grade mechanical/electrical energy and thermal energy for different modes of application. An interesting possibility to use thermal energy of low or medium quality is the conversion to refrigeration by means of absorption refrigeration systems. Absorption refrigeration was invented even earlier than mechanical refrigeration; for many years it was considered inferior. Process improvements and the increased attention to energy conservation and waste heat utilization in the last years, however, made this system attractive again as promising alternative to mechanical vapor compression. The advantages of this system become particularly evident for low temperature applications. More than 50% of the plants built in the last 20 years by the leading manufacturer in this field are designed for evaporation temperatures below −40° F, most of them in freeze-drying plants with temperatures down to −65° F, where they have been proven under severe working conditions with very sensitive products. In the citrus industry the greatest amount of refrigeration is required for concentrate processing at a temperature level of approximatley −41° F. And this is the reason why ammonia absorption refrigeration systems — particularly integrated in cogeneration plants — should be of interest for the citrus industry. Therefore absorption refrigeration will be a focal point of this paper. Paper published with permission.


Author(s):  
Ali A. Jalalzadeh-Azar ◽  
Ren Anderson ◽  
Steven J. Slayzak ◽  
Joseph P. Ryan

Integrated energy systems (IES) incorporating on-site power generation provide opportunities for improving reliability in energy supply, maximizing fuel efficiency, and enhancing environmental quality. To fully realize these attributes, optimum design and dynamic performance of integrated systems for a given application have to be pursued. Whether referred to as cogeneration, combined heat and power (CHP) or building cooling, heating, and power (BCHP), integrated energy systems manifest effective energy management aimed at closing spatial and temporal gaps between demand and supply of electrical and thermal energy. This is accomplished by on-site power production and utilization of the resulting thermal energy availability for thermally-driven technologies including desiccant dehumidification, absorption cooling, and space heating. The notion that the demands for thermal and electrical energy are not always congruent and in phase signifies the importance of considering thermal energy storage (TES) for integration. This paper explores the potential impact of implementing TES technology on the overall performance of integrated energy systems from the first- and second-law perspectives. In doing so, the dynamics of packed bed thermal energy storage systems for potential energy recovery from the exhaust gas of microturbines are investigated. Using a validated simulation model, the transient thermal response of these TES systems is examined via parametric analyses that allow variation in the thermal energy availability and physical characteristics of the packed beds. The parasitic electrical energy requirement associated with the pressure losses in the packed beds is included in the performance assessment. The results of this study are indicative of the promising role of TES in integrated energy systems.


Sign in / Sign up

Export Citation Format

Share Document