scholarly journals Acute Health Impacts of the Southeast Asian Transboundary Haze Problem—A Review

Author(s):  
Cheong ◽  
Ngiam ◽  
Morgan ◽  
Pek ◽  
Tan ◽  
...  

Air pollution has emerged as one of the world’s largest environmental health threats, with various studies demonstrating associations between exposure to air pollution and respiratory and cardiovascular diseases. Regional air quality in Southeast Asia has been seasonally affected by the transboundary haze problem, which has often been the result of forest fires from “slash-and-burn” farming methods. In light of growing public health concerns, recent studies have begun to examine the health effects of this seasonal haze problem in Southeast Asia. This review paper aims to synthesize current research efforts on the impact of the Southeast Asian transboundary haze on acute aspects of public health. Existing studies conducted in countries affected by transboundary haze indicate consistent links between haze exposure and acute psychological, respiratory, cardiovascular, and neurological morbidity and mortality. Future prospective and longitudinal studies are warranted to quantify the long-term health effects of recurrent, but intermittent, exposure to high levels of seasonal haze. The mechanism, toxicology and pathophysiology by which these toxic particles contribute to disease and mortality should be further investigated. Epidemiological studies on the disease burden and socioeconomic cost of haze exposure would also be useful to guide policy-making and international strategy in minimizing the impact of seasonal haze in Southeast Asia.

2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2021 ◽  
Vol 5 (10) ◽  
Author(s):  
Li-Yin Pang ◽  
Shola Sonagara ◽  
Oreoluwatomide Oduwole ◽  
Christopher Gibbins ◽  
Ting Kang Nee

Over the past few decades, microplastics have become increasingly ubiquitous in the environment and now contaminate the bodies of many living organisms, including humans. Microplastics, as defined here, are plastics within the size range 0.1 μm and 5 mm and are a worrying form of pollution due to public health concerns. This mini-review aims to summarise the route of entry of microplastics into humans and explore the potential detrimental health effects of microplastics. Trophic transfer is an important pathway for microplastic to be transferred across different groups of organisms, with ingestion is regarded as one of the major routes of exposure for humans. Other pathways include inhalation and dermal contact. The health consequences of microplastics manifest because these materials can translocate into the circulatory system and accumulate in the lungs, liver, kidney, and even brain, regardless of the route of entry. Health effects include gastrointestinal disturbances such as inflammation and gut microbiota disruption, respiratory conditions, neurotoxicity and potential cancers. Overall, while it is apparent that microplastics are causing adverse effects on different biological groups and ecosystems, current research is largely focused on marine organisms and aquaculture. Therefore, more studies are needed to investigate specific effects in mammalian cells and tissues, with more long-term epidemiological studies needed on human population considered to be at high-risk due to socioeconomic or other circumstance. Knowledge of the toxicity and long-term health impacts of microplastics is currently limited and requires urgent attention.


2019 ◽  
Vol 12 (1) ◽  
pp. 42 ◽  
Author(s):  
Piotr O. Czechowski ◽  
Piotr Dąbrowiecki ◽  
Aneta Oniszczuk-Jastrząbek ◽  
Michalina Bielawska ◽  
Ernest Czermański ◽  
...  

This article marks the first attempt on Polish and European scale to identify the relationship between urban and industrial air pollution and the health conditions of urban populations, while also estimating the financial burden of incidence rates among urban populations for diseases selected in the course of this study as having a causal relation with such incidence. This paper presents the findings of a pilot study based on general regression models, intended to explore air pollutants with a statistically relevant impact on the incidence of selected diseases within the Agglomeration of Gdańsk in the years 2010–2018. In discussing the city’s industrial functions, the study takes into consideration the existence within its limits of a large port that services thousands of ships every year, contributing substantially to the volume of emissions (mainly NOx and PM) to the air. The causes considered include the impact of air pollution, seasonality, land- and sea-based emissions, as well as their mutual interactions. All of the factors and their interactions have a significant impact (p ≤ 0.05) on the incidence of selected diseases in the long term (9 years). The source data were obtained from the Polish National Health Fund (NFZ), the Agency for Regional Monitoring of Atmosphere in the Agglomeration of Gdańsk (ARMAAG), the Chief Inspectorate of Environmental Protection (GIOŚ), and the Port of Gdańsk Harbourmaster. The study used 60 variables representing the diseases, classified into 19 groups. The resulting findings were used to formulate a methodology for estimating the financial burden of the negative health effects of air pollution for the agglomeration, and will be utilized as a reference point for further research in selected regions of Poland.


Author(s):  
Zhiming Yang ◽  
Qianhao Song ◽  
Jing Li ◽  
Yunquan Zhang

Chinese air pollution is obviously increasing, and the government makes efforts to strengthen air pollution treatment. Although adverse health effects gradually emerge, research determining individual vulnerability is limited. This study estimated the relationship between air pollution and obesity. Individual information of 13,414 respondents from 125 cities is used in the analysis. This study employs ordinary least squares (OLS) and multinomial logit model (m-logit) to estimate the impact of air pollution on obesity. We choose different air pollution and Body Mass Index (BMI) indicators for estimation. Empirical results show Air Quality Index (AQI) is significantly positively associated with the BMI score. As AQI adds one unit, the BMI score increases 0.031 (SE = 0.002; p < 0.001). The influence coefficients of particle size smaller than 2.5 μm (PM2.5), particle size smaller than 10 μm (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) to the BMI score are 0.034 (SE = 0.002; p < 0.001), 0.023 (SE = 0.001; p < 0.001), 0.52 (SE = 0.095; p < 0.001), 0.045 (SE = 0.004; p < 0.001), 0.021 (SE = 0.002; p < 0.001), 0.008 (SE = 0.003; p = 0.015), respectively. Generally, air pollution has an adverse effect on body weight. CO is the most influential pollutant, and female, middle-aged, and low-education populations are more severely affected. The results confirm that the adverse health effects of air pollution should be considered when making the air pollution policies. Findings also provide justification for health interventions, especially for people with obesity.


2006 ◽  
Vol 25 (S1) ◽  
pp. 221-222 ◽  
Author(s):  
Rajasekhar Balasubramanian ◽  
Siao Wee See

Author(s):  
R. A. Golikov ◽  
V. V. Kislitsyna ◽  
D. V. Surzhikov ◽  
A. M. Oleshchenko ◽  
M. A. Mukasheva

Introduction. Th e study of the infl uence of air pollution on the health of the population of industrial cities is an urgent task of preventive medicine.The purpose of the study— assessment of risk for population health of the city of Novokuznetsk, associated with the receipt in atmospheric air of polluting substances from SC «Kuznetsk TPP».Materials and methods.The paper presents the results of risk assessment for the health of the population of Novokuznetsk from the impact of atmospheric emissions of coal thermal power plant. Risks were calculated in accordance with the «Guidelines for the assessment of public health risks from exposure to chemicals that pollute the environment».Results.It was found that sulfur dioxide, coal ash, nitrogen dioxide had the largest share in the index of non-carcinogenic hazard of emissions. Th e maximum hazard index of carcinogenic substances was detected in hexavalent chromium. Th e greatest risk of immediate action, manifested in the development of refl ex reactions, was detected at two points of exposure to concentrations; it was determined by the infl uence of coal ash. In the formation of the risk of chronic intoxication, coal ash, sulfur dioxide, nitrogen dioxide, nitrogen oxide had the greatest impact; the greatest risk was detected at three points. Th e hazard coeffi  cients of the concentrations ranged from 2.04×10–4 to 6.723. The maximum index of danger equal to 29.31, corresponded to the residential district of Lenin square. Th e highest levels of carcinogenic risk identifi ed at three points were determined by exposure to hexavalent chromium.Conclusion.Th e work identifi ed environmentally disadvantaged neighborhoods of the city. It is shown that the main contribution to the formation of non-carcinogenic risk of health disorders of the city’s population is made by nitric oxide and nitrogen dioxide, coal ash, sulfur dioxide. Th e main carcinogen is hexavalent chromium. Th e total values of risks expressed in the multiplicities of excess of acceptable risk, for most points exceed 1, indicating a signifi cant impact of emissions on the health of the population. A set of atmospheric protection measures aimed at reducing risks to public health is recommended. 


2018 ◽  
Vol 6 (7) ◽  
pp. 1-124
Author(s):  
Martin L Williams ◽  
Sean Beevers ◽  
Nutthida Kitwiroon ◽  
David Dajnak ◽  
Heather Walton ◽  
...  

BackgroundThe UK’sClimate Change Act 2008(CCA; Great Britain.Climate Change Act 2008. Chapter 27. London: The Stationery Office; 2008) requires a reduction of 80% in carbon dioxide-equivalent emissions by 2050 on a 1990 base. This project quantified the impact of air pollution on health from four scenarios involving particulate matter of ≤ 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone (O3). Two scenarios met the CCA target: one with limited nuclear power build (nuclear replacement option; NRPO) and one with no policy constraint on nuclear (low greenhouse gas). Another scenario envisaged no further climate actions beyond those already agreed (‘baseline’) and the fourth kept 2011 concentrations constant to 2050 (‘2011’).MethodsThe UK Integrated MARKAL–EFOM System (UKTM) energy system model was used to develop the scenarios and produce projections of fuel use; these were used to produce air pollutant emission inventories for Great Britain (GB) for each scenario. The inventories were then used to run the Community Multiscale Air Quality model ‘air pollution model’ to generate air pollutant concentration maps across GB, which then, combined with relationships between concentrations and health outcomes, were used to calculate the impact on health from the air pollution emitted in each scenario. This is a significant improvement on previous health impact studies of climate policies, which have relied on emissions changes. Inequalities in exposure in different socioeconomic groups were also calculated, as was the economic impact of the pollution emissions.ResultsConcentrations of NO2declined significantly because of a high degree of electrification of the GB road transport fleet, although the NRPO scenario shows large increases in oxides of nitrogen emissions from combined heat and power (CHP) sources. Concentrations of PM2.5show a modest decrease by 2050, which would have been larger if it had not been for a significant increase in biomass (wood burning) use in the two CCA scenarios peaking in 2035. The metric quantifying long-term exposure to O3is projected to decrease, while the important short-term O3exposure metric increases. Large projected increases in future GB vehicle kilometres lead to increased non-exhaust PM2.5and particulate matter of ≤ 10 µm emissions. The two scenarios which achieve the CCA target resulted in more life-years lost from long-term exposures to PM2.5than in the baseline scenario. This is an opportunity lost and arises largely from the increase in biomass use, which is projected to peak in 2035. Reduced long-term exposures to NO2lead to many more life-years saved in the ‘CCA-compliant’ scenarios, but the association used may overestimate the effects of NO2itself. The more deprived populations are estimated currently to be exposed to higher concentrations than those less deprived, the contrast being largest for NO2. Despite reductions in concentrations in 2050, the most socioeconomically deprived are still exposed to higher concentrations than the less deprived.LimitationsModelling of the atmosphere is always uncertain; we have shown the model to be acceptable through comparison with observations. The necessary complexity of the modelling system has meant that only a small number of scenarios were run.ConclusionsWe have established a system which can be used to explore a wider range of climate policy scenarios, including more European and global scenarios as well as local measures. Future work could explore wood burning in more detail, in terms of the sectors in which it might be burned and the spatial distribution of this across the UK. Further analyses of options for CHP could also be explored. Non-exhaust emissions from road transport are an important source of particles and emission factors are uncertain. Further research on this area coupled with our modelling would be a valuable area of research.FundingThe National Institute for Health Research Public Health Research programme.


Sign in / Sign up

Export Citation Format

Share Document