Impact of forest fires on regional air quality in Southeast Asia

2006 ◽  
Vol 25 (S1) ◽  
pp. 221-222 ◽  
Author(s):  
Rajasekhar Balasubramanian ◽  
Siao Wee See
Author(s):  
Hsiang-He Lee ◽  
Oussama Iraqui ◽  
Yefu Gu ◽  
Hung-Lam Steve Yim ◽  
Apisada Chulakadabba ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
pp. 363-373 ◽  
Author(s):  
B. Aouizerats ◽  
G. R. van der Werf ◽  
R. Balasubramanian ◽  
R. Betha

Abstract. Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m−3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration slightly increased. However, the absolute concentrations of SOA (up to 20 μg m−3) were much lower than those from POA, indicating a minor role of SOA in these biomass burning plumes. Our results show that about 21% of the total mass loading of ambient PM10 during the July–October study period in Singapore was due to biomass and peat burning in Sumatra, but this contribution increased during high burning periods. In total, our model results indicated that during 35 days aerosol concentrations in Singapore were above the threshold of 50 μg m−3 day−1 indicating poor air quality. During 17 days this was due to fires, based on the difference between the simulations with and without fires. Local pollution in combination with recirculation of air masses was probably the main cause of poor air quality during the other 18 days, although fires from Sumatra and probably also from Kalimantan (Indonesian part of the island of Borneo) added to the enhanced PM10 concentrations. The model versus measurement comparisons highlighted that for our study period and region the GFED3 biomass burning aerosol emissions were more in line with observations than found in other studies. This indicates that care should be taken when using AOD to constrain emissions or estimate ground-level air quality. This study also shows the need for relatively high resolution modeling to accurately reproduce the advection of air masses necessary to quantify the impacts and feedbacks on regional air quality.


2020 ◽  
Author(s):  
Margaret Marvin ◽  
Paul Palmer ◽  
Fei Yao ◽  
Barry Latter ◽  
Richard Siddans ◽  
...  

<p>Mainland and maritime Southeast Asia is home to more than 655 million people, representing nearly 10% of the global population. The dry season in this region is typically associated with intense biomass burning activity, which leads to a significant increase in surface air pollutants that are harmful to human health, including ozone (O<sub>3</sub>) and fine (radii smaller than 2.5 microns) particulate matter (PM<sub>2.5</sub>). Latitude-based differences in dry season timing and land use distinguish two regional biomass burning regimes: (1) agricultural waste burning on the peninsular mainland from February through April and (2) coastal peat burning across the equatorial islands in September and October. The type and amount of material burned determines the chemical composition of emissions and subsequently their impact on regional air quality. Understanding the individual and collective roles of these biomass burning regimes is a crucial step towards developing effective air quality mitigation strategies for Southeast Asia. Here, we use the nested GEOS-Chem atmospheric chemistry transport model (horizontal resolution of 0.25° x 0.3125°) to simulate fire-atmosphere interactions over Southeast Asia during March and September of 2014, when emissions peak from the two regional burning seasons. Based on our analysis of model output, we report how these two distinct biomass burning regimes impact the photochemical environment over Southeast Asia and what the resulting consequences are for surface air quality. We will also present a critical evaluation of our model using ground-based and satellite observations of atmospheric composition across the region.</p>


Author(s):  
Cheong ◽  
Ngiam ◽  
Morgan ◽  
Pek ◽  
Tan ◽  
...  

Air pollution has emerged as one of the world’s largest environmental health threats, with various studies demonstrating associations between exposure to air pollution and respiratory and cardiovascular diseases. Regional air quality in Southeast Asia has been seasonally affected by the transboundary haze problem, which has often been the result of forest fires from “slash-and-burn” farming methods. In light of growing public health concerns, recent studies have begun to examine the health effects of this seasonal haze problem in Southeast Asia. This review paper aims to synthesize current research efforts on the impact of the Southeast Asian transboundary haze on acute aspects of public health. Existing studies conducted in countries affected by transboundary haze indicate consistent links between haze exposure and acute psychological, respiratory, cardiovascular, and neurological morbidity and mortality. Future prospective and longitudinal studies are warranted to quantify the long-term health effects of recurrent, but intermittent, exposure to high levels of seasonal haze. The mechanism, toxicology and pathophysiology by which these toxic particles contribute to disease and mortality should be further investigated. Epidemiological studies on the disease burden and socioeconomic cost of haze exposure would also be useful to guide policy-making and international strategy in minimizing the impact of seasonal haze in Southeast Asia.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hsiang-He Lee ◽  
Oussama Iraqui ◽  
Chien Wang

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 302
Author(s):  
Rajesh Kumar ◽  
Piyush Bhardwaj ◽  
Gabriele Pfister ◽  
Carl Drews ◽  
Shawn Honomichl ◽  
...  

This paper describes a quasi-operational regional air quality forecasting system for the contiguous United States (CONUS) developed at the National Center for Atmospheric Research (NCAR) to support air quality decision-making, field campaign planning, early identification of model errors and biases, and support the atmospheric science community in their research. This system aims to complement the operational air quality forecasts produced by the National Oceanic and Atmospheric Administration (NOAA), not to replace them. A publicly available information dissemination system has been established that displays various air quality products, including a near-real-time evaluation of the model forecasts. Here, we report the performance of our air quality forecasting system in simulating meteorology and fine particulate matter (PM2.5) for the first year after our system started, i.e., 1 June 2019 to 31 May 2020. Our system shows excellent skill in capturing hourly to daily variations in temperature, surface pressure, relative humidity, water vapor mixing ratios, and wind direction but shows relatively larger errors in wind speed. The model also captures the seasonal cycle of surface PM2.5 very well in different regions and for different types of sites (urban, suburban, and rural) in the CONUS with a mean bias smaller than 1 µg m−3. The skill of the air quality forecasts remains fairly stable between the first and second days of the forecasts. Our air quality forecast products are publicly available at a NCAR webpage. We invite the community to use our forecasting products for their research, as input for urban scale (<4 km), air quality forecasts, or the co-development of customized products, just to name a few applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ja-Ho Koo ◽  
Jhoon Kim ◽  
Yun Gon Lee ◽  
Sang Seo Park ◽  
Seoyoung Lee ◽  
...  

AbstractBy using multiple satellite measurements, the changes of the aerosol optical depth (AOD) and nitrogen dioxide (NO2) over South Korea were investigated from January to March 2020 to evaluate the COVID-19 effect on the regional air quality. The NO2 decrease in South Korea was found but not significant, which indicates the effects of spontaneous social distancing under the maintenance of ordinary life. The AODs in 2020 were normally high in January, but they became lower starting from February. Since the atmosphere over Eastern Asia was unusually stagnant in January and February 2020, the AOD decrease in February 2020 clearly reveals the positive effect of the COVID-19. Considering the insignificant NO2 decrease in South Korea and the relatively long lifetime of aerosols, the AOD decrease in South Korea may be more attributed to the improvement of the air quality in neighboring countries. In March, regional atmosphere became well mixed and ventilated over South Korea, contributing to large enhancement of air quality. While the social activity was reduced after the COVID-19 outbreak, the regional meteorology should be also examined significantly to avoid the biased evaluation of the social impact on the change of the regional air quality.


2011 ◽  
Vol 45 (24) ◽  
pp. 4091-4098 ◽  
Author(s):  
Sergey L. Napelenok ◽  
Kristen M. Foley ◽  
Daiwen Kang ◽  
Rohit Mathur ◽  
Thomas Pierce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document