scholarly journals Mapping Environmental Suitability of Scrub Typhus in Nepal Using MaxEnt and Random Forest Models

Author(s):  
Bipin Acharya ◽  
Wei Chen ◽  
Zengliang Ruan ◽  
Gobind Pant ◽  
Yin Yang ◽  
...  

Being a globally emerging mite-borne zoonotic disease, scrub typhus is a serious public health concern in Nepal. Mapping environmental suitability and quantifying the human population under risk of the disease is important for prevention and control efforts. In this study, we model and map the environmental suitability of scrub typhus using the ecological niche approach, machine learning modeling techniques, and report locations of scrub typhus along with several climatic, topographic, Normalized Difference Vegetation Index (NDVI), and proximity explanatory variables and estimated population under the risk of disease at a national level. Both MaxEnt and RF technique results reveal robust predictive power with test The area under curve (AUC) and true skill statistics (TSS) of above 0.8 and 0.6, respectively. Spatial prediction reveals that environmentally suitable areas of scrub typhus are widely distributed across the country particularly in the low-land Tarai and less elevated river valleys. We found that areas close to agricultural land with gentle slopes have higher suitability of scrub typhus occurrence. Despite several speculations on the association between scrub typhus and proximity to earthquake epicenters, we did not find a significant role of proximity to earthquake epicenters in the distribution of scrub typhus in Nepal. About 43% of the population living in highly suitable areas for scrub typhus are at higher risk of infection, followed by 29% living in suitable areas of moderate-risk, and about 22% living in moderately suitable areas of lower risk. These findings could be useful in selecting priority areas for surveillance and control strategies effectively.

2018 ◽  
Vol 7 (10) ◽  
pp. 405 ◽  
Author(s):  
Urška Kanjir ◽  
Nataša Đurić ◽  
Tatjana Veljanovski

The European Common Agricultural Policy (CAP) post-2020 timeframe reform will reshape the agriculture land use control procedures from a selected risk fields-based approach into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling greater transparency and comparability of CAP results in different Member States. In this paper, we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond to land use anomaly observations in the assessment of agricultural parcel management activities. We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and crop fields in one growing season, and in particular those that can be associated with time-defined greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized procedures to support and verify the BFAST Monitor anomaly detection results using the analysis of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series standard deviation output, where geographical objects of interest are parcels of particular land use. The validation of land use candidate anomalies in view of land use ineligibilities was performed with the information on declared land annual use and field controls, as obtained in the framework of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel greenness. As such it can already be introduced to help the process of agricultural land use control within certain CAP activities in the preparation and adaptation phase.


2021 ◽  
Author(s):  
Zejin Ou ◽  
Huan He ◽  
Danfeng Yu ◽  
Yongzhi Li ◽  
Yuanhao Liang ◽  
...  

Abstract Background HIV/AIDS is a critical public health concern worldwide. This article aimed to demonstrate th trends of HIV/AIDS burden from 1990 to 2019.Methods Data was extracted from the Global Burden of Disease study (GBDs) 2019. Estimated annual percentage change (EAPC) and age-standardized rate (ASR) were estimated to quantify the trends at global, regional and national levels.Results During the period 1990-2004, the trend in incidence of HIV/AIDS was stable globally. Whereas the trends in prevalence, death and disability-adjusted life years (DALYs) had pronounced increasing trends, with the respective EAPCs were 7.47 (95%confidence interval [CI]: 5.84 to 9.12), 10.85(95%CI: 8.90 to 12.84), and 10.40(95%CI: 8.47 to 12.36). Meanwhile, the pronounced increasing trends were seen in low-resource settings, particularly that of death in Oceania and South Asia, in which the respective EAPCs were 44.76 (95%CI: 40.81 to 48.82) and 40.82 (95%CI: 34.31 to 47.64). However, the global trends in incidence, death and DALYs of HIV/AIDS pronouncedly decreased from 2005 to 2019, with the respective EAPCs were −2.68(95%CI: −2.82 to −2.53), −6.73(95%CI: −6.98 to −6.47) and −6.75(95%CI: −6.95 to −6.54). Whereas prevalence showed increasing trend (EAPC: 0.71, 95%CI: 0.54 to 0.87). Decreasing trends of HIV/AIDS were observed in most regions and countries, particularly that of death and DALYs in Burundi respectively were −15.28 (95%CI: −16.08 to −14.47) and −15.07 (95%CI: −15.79 to −14.33). Conclusions Decreasing trends of HIV/AIDS were observed worldwide over the past 15 years. However, HIV/AIDS remains one of the most critical causes of health loss worldwide, which emphasized the effective prevention and control strategies.


2020 ◽  
Vol 12 (24) ◽  
pp. 4136
Author(s):  
Animesh Chandra Das ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Land evaluation is important for assessing environmental limitations that inhibit higher yield and productivity in tea. The aim of this research was to determine the suitable lands for sustainable tea production in the northeastern part of Bangladesh using phenological datasets from remote sensing, geospatial datasets of soil–plant biophysical properties, and expert opinions. Sentinel-2 satellite images were processed to obtain layers for land use and land cover (LULC) as well as the normalized difference vegetation index (NDVI). Data from the Shuttle Radar Topography Mission (SRTM) were used to generate the elevation layer. Other vector and raster layers of edaphic, climatic parameters, and vegetation indices were processed in ArcGIS 10.7.1® software. Finally, suitability classes were determined using weighted overlay of spatial analysis based on reclassified raster layers of all parameters along with the results from multicriteria analysis. The results of the study showed that only 41,460 hectares of land (3.37% of the total land) were in the highly suitable category. The proportions of moderately suitable, marginally suitable, and not suitable land categories for tea cultivation in the Sylhet Division were 9.01%, 49.87%, and 37.75%, respectively. Thirty-one tea estates were located in highly suitable areas, 79 in moderately suitable areas, 24 in marginally suitable areas, and only one in a not suitable area. Yield estimation was performed with the NDVI (R2 = 0.69, 0.66, and 0.67) and the LAI (R2 = 0.68, 0.65, and 0.63) for 2017, 2018, and 2019, respectively. This research suggests that satellite remote sensing and GIS application with the analytical hierarchy process (AHP) could be used by agricultural land use planners and land policy makers to select suitable lands for increasing tea production.


2021 ◽  
pp. 123-126

Reliable and up-to-date data on every soil segment of the land areas cultivated for the contemporary land utilization is of vital significance. Currently, the efficient planning and control over the agricultural activities is hardly possible without any reliable and updated information on the yield and agricultural soil types, whereas implementation of drones in the field of land management and in agriculture, on the whole, is one of the most perspective directions, since unlike the artificial sattelites, they provide more precise and guided images for the given location. The aim of the research is to produce the digital field model and NDVI map for the crops by applying Parrot Disco-Pro AG drone kit.


2021 ◽  
Vol 13 (24) ◽  
pp. 13891
Author(s):  
Yan Sun ◽  
Xiaojun Song ◽  
Jing Ma ◽  
Haochen Yu ◽  
Xiaoping Ge ◽  
...  

Land consolidation (LC) is an important measure taken to increase the quantity and productivity of farmland while reducing land fragmentation and ensuring food security. However, long-term land consolidation project (LCP) practices are rarely analyzed to assess the effectiveness for achieving current policy objectives of LC in China. Taking the practices of LCPs in Jiangsu Province from 2001 to 2017 as a case study, we used the spatial self-related analysis, the consistency analysis, and the redundant analysis (RDA), and found that the construction scale and the investment amount of LC in Jiangsu Province displayed varying trends, and that the newly increased farmland rate is clearly divided into three stages and gradually decreases. The newly increased farmland area, the investment funds, and reserved land resources for farmlands are not spatially synchronized in Jiangsu Province. Only the positive relationship between the LC rate and the Normalized Difference Vegetation Index (NDVI) growth rate continue to rise. The earlier stage of land consolidation projects (LCPs)’s practices is mainly affected by natural and social factors, and the late stage is mainly affected by economic and strategic factors. Finally, a new implementation scheme framework of LC planning has been proposed. This framework provides reference for top-level design, planning, and management of LC policies at the national level in China and other developing countries. Check meaning retained.


2020 ◽  
Vol 12 (13) ◽  
pp. 2113
Author(s):  
Dan Wanyama ◽  
Nathan J. Moore ◽  
Kyla M. Dahlin

Many developing nations are facing severe food insecurity partly because of their dependence on rainfed agriculture. Climate variability threatens agriculture-based community livelihoods. With booming population growth, agricultural land expands, and natural resource extraction increases, leading to changes in land use and land cover characterized by persistent vegetation greening and browning. This can modify local climate variability due to changing land–atmosphere interactions. Yet, for landscapes with significant interannual variability, such as the Mount Elgon ecosystem in Kenya and Uganda, characterizing these changes is a difficult task and more robust methods have been recommended. The current study combined trend (Mann–Kendall and Sen’s slope) and breakpoint (bfast) analysis methods to comprehensively examine recent vegetation greening and browning in Mount Elgon at multiple time scales. The study used both Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Climate Hazards group Infrared Precipitation with Stations (CHIRPS) data and attempted to disentangle nature- versus human-driven vegetation greening and browning. Inferences from a 2019 field study were valuable in explaining some of the observed patterns. The results indicate that Mount Elgon vegetation is highly variable with both greening and browning observable at all time scales. Mann–Kendall and Sen’s slope revealed major changes (including deforestation and reforestation), while bfast detected most of the subtle vegetation changes (such as vegetation degradation), especially in the savanna and grasslands in the northeastern parts of Mount Elgon. Precipitation in the area had significantly changed (increased) in the post-2000 era than before, particularly in 2006–2010, thus influencing greening and browning during this period. The greenness–precipitation relationship was weak in other periods. The integration of Mann–Kendall and bfast proved useful in comprehensively characterizing vegetation greenness. Such a comprehensive description of Mount Elgon vegetation dynamics is an important first step to instigate policy changes for simultaneously conserving the environment and improving livelihoods that are dependent on it.


2021 ◽  
Vol 13 (4) ◽  
pp. 568
Author(s):  
David Andrés Rivas-Tabares ◽  
Antonio Saa-Requejo ◽  
Juan José Martín-Sotoca ◽  
Ana María Tarquis

Vegetation indices time series analysis is increasingly improved for characterizing agricultural land processes. However, this is challenging because of the multeity of factors affecting vegetation growth. In semiarid regions the rainfall, the soil properties and climate are strongly correlated with crop growth. These relationships are commonly analyzed using the normalized difference vegetation index (NDVI). NDVI series from two sites, belonging to different agroclimatic zones, were examined, decomposing them into the overall average pattern, residuals, and anomalies series. All of them were studied by applying the concept of the generalized Hurst exponent. This is derived from the generalized structure function, which characterizes the series’ scaling properties. The cycle pattern of NDVI series from both zones presented differences that could be explained by the differences in the climatic precipitation pattern and soil characteristics. The significant differences found in the soil reflectance bands confirm the differences in both sites. The scaling properties of NDVI original series were confirmed with Hurst exponents higher than 0.5 showing a persistent structure. The opposite was found when analyzing the residual and the anomaly series with a stronger anti-persistent character. These findings reveal the influences of soil–climate interactions in the dynamic of NDVI series of rainfed cereals in the semiarid.


2021 ◽  
Vol 13 (4) ◽  
pp. 681 ◽  
Author(s):  
Sergio Morell-Monzó ◽  
María-Teresa Sebastiá-Frasquet ◽  
Javier Estornell

Agricultural land abandonment is an increasing problem in Europe. The Comunitat Valenciana Region (Spain) is one of the most important citrus producers in Europe suffering this problem. This region characterizes by small sized citrus plots and high spatial fragmentation which makes necessary to use Very High-Resolution images to detect abandoned plots. In this paper spectral and Gray Level Co-Occurrence Matrix (GLCM)-based textural information derived from the Normalized Difference Vegetation Index (NDVI) are used to map abandoned citrus plots in Oliva municipality (eastern Spain). The proposed methodology is based on three general steps: (a) extraction of spectral and textural features from the image, (b) pixel-based classification of the image using the Random Forest algorithm, and (c) assignment of a single value per plot by majority voting. The best results were obtained when extracting the texture features with a 9 × 9 window size and the Random Forest model showed convergence around 100 decision trees. Cross-validation of the model showed an overall accuracy of the pixel-based classification of 87% and an overall accuracy of the plot-based classification of 95%. All the variables used are statistically significant for the classification, however the most important were contrast, dissimilarity, NIR band (720 nm), and blue band (620 nm). According to our results, 31% of the plots classified as citrus in Oliva by current methodology are abandoned. This is very important to avoid overestimating crop yield calculations by public administrations. The model was applied successfully outside the main study area (Oliva municipality); with a slightly lower accuracy (92%). This research provides a new approach to map small agricultural plots, especially to detect land abandonment in woody evergreen crops that have been little studied until now.


2018 ◽  
Vol 10 (12) ◽  
pp. 4363 ◽  
Author(s):  
Patricia Arrogante-Funes ◽  
Carlos Novillo ◽  
Raúl Romero-Calcerrada

Currently, there exists growing evidence that warming is amplified with elevation resulting in rapid changes in temperature, humidity and water in mountainous areas. The latter might result in considerable damage to forest and agricultural land cover, affecting all the ecosystem services and the socio-economic development that these mountain areas provide. The Mediterranean mountains, moreover, which host a high diversity of natural species, are more vulnerable to global change than other European ecosystems. The protected areas of the mountain ranges of peninsular Spain could help preserve natural resources and landscapes, as well as promote scientific research and the sustainable development of local populations. The temporal statistical trends (2001–2016) of the MODIS13Q1 Normalized Difference Vegetation Index (NDVI) interannual dynamics are analyzed to explore whether the NDVI trends are found uniformly within the mountain ranges of mainland Spain (altitude > 1000 m), as well as in the protected or non-protected mountain areas. Second, to determine if there exists a statistical association between finding an NDVI trend and the specific mountain ranges, protected or unprotected areas are studied. Third, a possible association between cover types in pure pixels using CORINE (Co-ordination of Information on the Environment) land cover cartography is studied and land cover changes between 2000 and 2006 and between 2006 and 2012 are calculated for each mountainous area. Higher areas are observed to have more positive NDVI trends than negative in mountain areas located in mainland Spain during the 2001–2016 period. The growing of vegetation, therefore, was greater than its decrease in the study area. Moreover, differences in the size of the area between growth and depletion of vegetation patterns along the different mountains are found. Notably, more negatives than expected are found, and fewer positives are found than anticipated in the mountains, such as the Cordillera Cantábrica (C.Cant.) or Montes de Murcia y Alicante (M.M.A). Quite the reverse happened in Pirineos (Pir.) and Montes de Cádiz y Málaga (M.C.M.), among others. The statistical association between the trends found and the land cover types is also observed. The differences observed can be explained since the mountain ranges in this study are defined by climate, land cover, human usage and, to a small degree, by land cover changes, but further detailed research is needed to get in-depth detailed conclusions. Conversely, it is found that, in protected mountain areas, a lower NDVI pixels trend than expected (>20%) occurs, whereas it is less than anticipated in unprotected mountain areas. This could be caused by management and the land cover type.


Sign in / Sign up

Export Citation Format

Share Document