scholarly journals Shall We Dance? Dancing Modulates Executive Functions and Spatial Memory

Author(s):  
Carmen Noguera ◽  
Dolores Carmona ◽  
Adrián Rueda ◽  
Rubén Fernández ◽  
José Manuel Cimadevilla

Background: Aging is generally considered to be related to physical and cognitive decline. This is especially prominent in the frontal and parietal lobes, underlying executive functions and spatial memory, respectively. This process could be successfully mitigated in certain ways, such as through the practice of aerobic sports. With regard to this, dancing integrates physical exercise with music and involves retrieval of complex sequences of steps and movements creating choreographies. Methods: In this study, we compared 26 non-professional salsa dancers (mean age 55.3 years, age-range 49–70 years) with 20 non-dancers (mean age 57.6 years, age-range 49–70 years) by assessing two variables: their executive functions and spatial memory performance. Results: results showed that dancers scored better that non-dancers in our tests, outperforming controls in executive functions-related tasks. Groups did not differ in spatial memory performance. Conclusions: This work suggests that dancing can be a valid way of slowing down the natural age-related cognitive decline. A major limitation of this study is the lack of fitness assessment in both groups. In addition, since dancing combines multiple factors like social contact, aerobic exercise, cognitive work with rhythms, and music, it is difficult to determine the weight of each variable.

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 288-289
Author(s):  
N Kraimi ◽  
G De Palma ◽  
J Lu ◽  
D Bowdish ◽  
E Verdu ◽  
...  

Abstract Background Age-associated deterioration of cognitive function and memory capacity occur in a variety of mammals, from humans to rodents. For example, significant memory deficits have been reported in conventionally raised (SPF) old mice compared to conventionally raised young mice submitted to a spatial memory task (Prevot et al., Mol Neuropsychiatry 2019). Microbiota to brain signaling is now well established in mice, but the extent to which this influences age-related memory decline is unknown. Aims Our project aims to determine whether the intestinal microbiota contributes to age-related changes in brain function. We address the hypothesis that age-related cognitive decline is attenuated in the absence of the intestinal microbiota. Methods We studied locomotor behavior and spatial memory performance in young germ-free (GF) mice (2–3 months of age, n=24) and senescent GF mice (13–27 months old, n=22) maintained in axenic conditions, and compared them to conventionally raised (SPF) mice. We used the Y-maze test based on a spontaneous alternations task to assess cognition, with alternation rate as a proxy of spatial working memory performance. The locomotor activity was measured using the open-field test. Results GF old mice traveled less distance (458.9 cm) than GF young mice (875.7 cm, p < 0.001) but these differences in locomotor activity did not influence spatial memory performance. Indeed, both GF old and GF young mice had an identical alternation rate of 73.3% (p > 0.05). This contrasted with the memory impairment found in old SPF mice that displayed lower alternation rate of 58.3%, compared to that found in young SPF mice (76.2%, p = 0.13). Conclusions We conclude that the absence of age-related memory decline in germ-free mice is consistent with a role for the microbiota in the cognitive decline associated with aging, likely through action on the immune system, well documented in SPF mice (Thevaranjan et al., Cell Host & Microbe 2017). We propose that novel microbiota-targeted therapeutic strategies may delay or prevent the cognitive decline of aging. Funding Agencies CIHRBalsam Family Foundation


Author(s):  
Yvonne Rogalski ◽  
Muriel Quintana

The population of older adults is rapidly increasing, as is the number and type of products and interventions proposed to prevent or reduce the risk of age-related cognitive decline. Advocacy and prevention are part of the American Speech-Language-Hearing Association’s (ASHA’s) scope of practice documents, and speech-language pathologists must have basic awareness of the evidence contributing to healthy cognitive aging. In this article, we provide a brief overview outlining the evidence on activity engagement and its effects on cognition in older adults. We explore the current evidence around the activities of eating and drinking with a discussion on the potential benefits of omega-3 fatty acids, polyphenols, alcohol, and coffee. We investigate the evidence on the hypothesized neuroprotective effects of social activity, the evidence on computerized cognitive training, and the emerging behavioral and neuroimaging evidence on physical activity. We conclude that actively aging using a combination of several strategies may be our best line of defense against cognitive decline.


2021 ◽  
Vol 67 ◽  
pp. 101302
Author(s):  
Benjamin Kioussis ◽  
Camilla S.L. Tuttle ◽  
Daniel S. Heard ◽  
Brian K. Kennedy ◽  
Nicola T. Lautenschlager ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1611
Author(s):  
Nur Fathiah Abdul Abdul Sani ◽  
Ahmad Imran Zaydi Amir Amir Hamzah ◽  
Zulzikry Hafiz Abu Abu Bakar ◽  
Yasmin Anum Mohd Mohd Yusof ◽  
Suzana Makpol ◽  
...  

The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult’s susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.


BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e046879
Author(s):  
Bernhard Grässler ◽  
Fabian Herold ◽  
Milos Dordevic ◽  
Tariq Ali Gujar ◽  
Sabine Darius ◽  
...  

IntroductionThe diagnosis of mild cognitive impairment (MCI), that is, the transitory phase between normal age-related cognitive decline and dementia, remains a challenging task. It was observed that a multimodal approach (simultaneous analysis of several complementary modalities) can improve the classification accuracy. We will combine three noninvasive measurement modalities: functional near-infrared spectroscopy (fNIRS), electroencephalography and heart rate variability via ECG. Our aim is to explore neurophysiological correlates of cognitive performance and whether our multimodal approach can aid in early identification of individuals with MCI.Methods and analysisThis study will be a cross-sectional with patients with MCI and healthy controls (HC). The neurophysiological signals will be measured during rest and while performing cognitive tasks: (1) Stroop, (2) N-back and (3) verbal fluency test (VFT). Main aims of statistical analysis are to (1) determine the differences in neurophysiological responses of HC and MCI, (2) investigate relationships between measures of cognitive performance and neurophysiological responses and (3) investigate whether the classification accuracy can be improved by using our multimodal approach. To meet these targets, statistical analysis will include machine learning approaches.This is, to the best of our knowledge, the first study that applies simultaneously these three modalities in MCI and HC. We hypothesise that the multimodal approach improves the classification accuracy between HC and MCI as compared with a unimodal approach. If our hypothesis is verified, this study paves the way for additional research on multimodal approaches for dementia research and fosters the exploration of new biomarkers for an early detection of nonphysiological age-related cognitive decline.Ethics and disseminationEthics approval was obtained from the local Ethics Committee (reference: 83/19). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly.Trial registration numberClinicalTrials.gov, NCT04427436, registered on 10 June 2020, https://clinicaltrials.gov/ct2/show/study/NCT04427436.


2011 ◽  
Vol 43 (1) ◽  
pp. 201-212 ◽  
Author(s):  
Heather D. VanGuilder ◽  
Julie A. Farley ◽  
Han Yan ◽  
Colleen A. Van Kirk ◽  
Matthew Mitschelen ◽  
...  

2012 ◽  
Vol 24 (S1) ◽  
pp. S1-S2 ◽  
Author(s):  
Seol-Heui Han ◽  
Helen Lavretsky

In June 2011, Dr. Willmar Schwabe Pharmaceuticals sponsored a two-day expert meeting in Amsterdam, The Netherlands. The meeting brought together 19 dementia experts from a range of disciplines and countries to review preclinical and clinical data on Ginkgo biloba special extract EGb 761® in the context of recent developments in the diagnosis and treatment of age-related cognitive decline and Alzheimer's disease (AD). Ginkgo biloba special extract EGb 761® is formally approved and reimbursed for the symptomatic treatment of age-related cognitive decline or dementia by numerous authorities worldwide. The meeting therefore focused on relevant research questions and potential study designs with appropriate target populations to prove the efficacy of Ginkgo biloba special extract EGb 761® as a disease-modifying product in AD and to reveal further relevant modes of action.


Sign in / Sign up

Export Citation Format

Share Document