scholarly journals Particulate Matter Decreases Intestinal Barrier-Associated Proteins Levels in 3D Human Intestinal Model

Author(s):  
Brittany Woodby ◽  
Maria Lucia Schiavone ◽  
Erika Pambianchi ◽  
Angela Mastaloudis ◽  
Shelly N. Hester ◽  
...  

(1) Background: The gastrointestinal tract (GI) tract is one of the main organs exposed to particulate matter (PM) directly through ingestion of contaminated food or indirectly through inhalation. Previous studies have investigated the effects of chronic PM exposure on intestinal epithelia in vitro using Caco−2 cells and in vivo using mice. In this study, we hypothesized that chronic PM exposure would increase epithelial permeability and decrease barrier function due to altered redox homeostasis, which alters levels and/or localization of barrier-associated proteins in human three-dimensional (3D) intestinal tissues. (2) Methods: Transepithelial electrical resistance (TEER) in tissues exposed to 50, 100, 150, 250, and 500 µg/cm2 of PM for 1 week and 2 weeks was analyzed. Levels and localization of tight junction proteins zonula occludens protein 1 (ZO−1) and claudin−1 and desmosome-associated desmocollin were analyzed using immunofluorescence. As a marker of oxidative stress, levels of 4-hydroxy-nonenal (4HNE) adducts were measured. (3) Results: No differences in TEER measurements were observed between exposed and un-exposed tissues. However, increased levels of 4HNE adducts in exposed tissues were observed. Additionally, decreased levels of ZO−1, claudin−1, and desmocollin were demonstrated. (4) Conclusion: These data suggest that chronic PM exposure results in an increase of oxidative stress; modified levels of barrier-associated proteins could possibly link to GI tract inflammatory conditions.

2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Kecheng Lei ◽  
Xiaoxia Gu ◽  
Alvaro G. Alvarado ◽  
Yuhong Du ◽  
Shilin Luo ◽  
...  

Abstract Background Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation. Methods High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo. Results We identified a small molecular inhibitor, “MNPC,” that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo. Conclusions Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.


2016 ◽  
Vol 113 (47) ◽  
pp. E7564-E7571 ◽  
Author(s):  
Carmen R. Sunico ◽  
Abdullah Sultan ◽  
Tomohiro Nakamura ◽  
Nima Dolatabadi ◽  
James Parker ◽  
...  

Recent studies have pointed to protein S-nitrosylation as a critical regulator of cellular redox homeostasis. For example, S-nitrosylation of peroxiredoxin-2 (Prx2), a peroxidase widely expressed in mammalian neurons, inhibits both enzymatic activity and protective function against oxidative stress. Here, using in vitro and in vivo approaches, we identify a role and reaction mechanism of the reductase sulfiredoxin (Srxn1) as an enzyme that denitrosylates (thus removing -SNO) from Prx2 in an ATP-dependent manner. Accordingly, by decreasing S-nitrosylated Prx2 (SNO-Prx2), overexpression of Srxn1 protects dopaminergic neural cells and human-induced pluripotent stem cell (hiPSC)-derived neurons from NO-induced hypersensitivity to oxidative stress. The pathophysiological relevance of this observation is suggested by our finding that SNO-Prx2 is dramatically increased in murine and human Parkinson’s disease (PD) brains. Our findings therefore suggest that Srxn1 may represent a therapeutic target for neurodegenerative disorders such as PD that involve nitrosative/oxidative stress.


2019 ◽  
Author(s):  
Nico Linzner ◽  
Vu Van Loi ◽  
Verena Nadin Fritsch ◽  
Quach Ngoc Tung ◽  
Saskia Stenzel ◽  
...  

ABSTRACTStaphylococcus aureusis a major human pathogen and has to cope with reactive oxygen and chlorine species (ROS, RCS) during infections. The low molecular weight thiol bacillithiol (BSH) is an important defense mechanism ofS. aureusfor detoxification of ROS and HOCl stress to maintain the reduced state of the cytoplasm. Under HOCl stress, BSH forms mixed disulfides with proteins, termed asS-bacillithiolations, which are reduced by bacilliredoxins (BrxA and BrxB). The NADPH-dependent flavin disulfide reductase YpdA is phylogenetically associated with the BSH synthesis and BrxA/B enzymes and was proposed to function as BSSB reductase. Here, we investigated the role of the bacilliredoxin BrxAB/BSH/YpdA pathway inS. aureusCOL under oxidative stress and macrophage infection conditionsin vivoand in biochemical assaysin vitro. Using HPLC thiol metabolomics, a strongly enhanced BSSB level and a decreased BSH/BSSB ratio were measured in theS. aureusCOLypdAdeletion mutant under control and NaOCl stress. Monitoring the BSH redox potential (EBSH) using the Brx-roGFP2 biosensor revealed that YpdA is required for regeneration of the reducedEBSHupon recovery from oxidative stress. In addition, theypdAmutant was impaired in H2O2detoxification as measured with the novel H2O2-specific Tpx-roGFP2 biosensor. Phenotype analyses further showed that BrxA and YpdA are required for survival under NaOCl and H2O2stressin vitroand inside murine J-774A.1 macrophages in infection assaysin vivo. Finally, NADPH-coupled electron transfer assays provide evidence for the function of YpdA in BSSB reduction, which depends on the conserved Cys14 residue. YpdA acts together with BrxA and BSH in de-bacillithiolation ofS-bacilithiolated GapDH. In conclusion, our results point to a major role of the BrxA/BSH/YpdA pathway in BSH redox homeostasis inS. aureusduring recovery from oxidative stress and under infections.


2012 ◽  
Vol 302 (7) ◽  
pp. R845-R853 ◽  
Author(s):  
S. R. Oliver ◽  
N. A. Phillips ◽  
V. L. Novosad ◽  
M. P. Bakos ◽  
E. E. Talbert ◽  
...  

Loss of the intestinal barrier is critical to the clinical course of heat illness, but the underlying mechanisms are still poorly understood. We tested the hypothesis that conditions characteristic of mild heatstroke in mice are associated with injury to the epithelial lining of the intestinal tract and comprise a critical component of barrier dysfunction. Anesthetized mice were gavaged with 4 kDa FITC-dextran (FD-4) and exposed to increasing core temperatures, briefly reaching 42.4°C, followed by 30 min recovery. Arterial samples were collected to measure FD-4 concentration in plasma (in vivo gastrointestinal permeability). The small intestines were then removed to measure histological evidence of injury. Hyperthermia resulted in a ≈2.5-fold elevation in plasma FD-4 and was always associated with significant histological evidence of injury to the epithelial lining compared with matched controls, particularly in the duodenum. When isolated intestinal segments from control animals were exposed to ≥41.5°C, marked increases in permeability were observed within 60 min. These changes were associated with release of lactate dehydrogenase, evidence of protein oxidation via carbonyl formation and histological damage. Coincubation with N-acetylcysteine protected in vitro permeability during hyperthermia and reduced histological damage and protein oxidation. Chelation of intracellular Ca2+ to block tight junction opening during 41.5°C exposure failed to reduce the permeability of in vitro segments. The results demonstrate that hyperthermia exposure in mouse intestine, at temperatures at or below those necessary to induce mild heatstroke, cause rapid and substantial injury to the intestinal lining that may be attributed, in part, to oxidative stress.


2021 ◽  
Vol 2021 ◽  
pp. 1-32
Author(s):  
Farhin Patel ◽  
Kirti Parwani ◽  
Priyashi Rao ◽  
Dhara Patel ◽  
Rakesh Rawal ◽  
...  

Ethanol depletes intestinal integrity and promotes gut dysbiosis. Studies have suggested the individual role of probiotics and metformin Met in protecting intestinal barrier function from injuries induced by ethanol. The objective of the current study is to investigate the potential mechanism by which coadministration of probiotic Visbiome® (V) and Met blocks the ethanol-induced intestinal barrier dysfunction/gut leakiness utilizing Caco-2 monolayers, a rat model with chronic ethanol injury, and in silico docking interaction models. In Caco-2 monolayers, exposure to ethanol significantly disrupted tight junction (TJ) localization, elevated monolayer permeability, and oxidative stress compared with controls. However, cotreatment with probiotic V and Met largely ameliorated the ethanol-induced mucosal barrier dysfunction, TJ disruption, and gut oxidative stress compared with ethanol-exposed monolayers and individual treatment of either agent. Rats fed with ethanol-containing Lieber-DeCarli liquid diet showed decreased expression of TJ proteins, and increased intestinal barrier injury resulting in pro-inflammatory response and oxidative stress in the colon. We found that co-administration of probiotic V and Met improved the expression of intestinal TJ proteins (ZO-1 and occludin) and upregulated the anti-inflammatory response, leading to reduced ER stress. Moreover, co-administration of probiotic V and Met inhibited the CYP2E1 and NOX gene expression, and increase the translocation of Nrf-2 as well as anti-oxidative genes (SOD, catalase, Gpx, and HO-1), leading to reduced colonic ROS content and malondialdehyde levels. The combined treatment of probiotic V and Met also improved their binding affinities towards HO-1, Nrf-2, SLC5A8, and GPR109A, which could be attributed to their synergistic effect. Our findings based on in-vitro, in-vivo, and in-silico analyses suggest that the combination of probiotic V and Met potentially acts in synergism, attributable to their property of inhibition of inflammation and oxidative stress against ethanol-induced intestinal barrier injury.


Author(s):  
Daniel N. El Kodsi ◽  
Jacqueline M. Tokarew ◽  
Rajib Sengupta ◽  
Nathalie A. Lengacher ◽  
Andy C. Ng ◽  
...  

SUMMARYWe recently hypothesized that parkin plays a role in redox homeostasis and provided evidence that it directly reduces hydrogen peroxide (H2O2) in vitro. Here, we examined this anti-oxidant activity in vivo. Informed by findings in human brain, we demonstrate that elevated oxidative stress promotes parkin insolubility in mice. In normal mouse brain parkin was partially oxidized, e.g., at cysteines 195 and 252, which was augmented by oxidative stress. Although under basal conditions H2O2 levels were unchanged in adult prkn-/- brain, a parkin-dependent reduction of cytosolic H2O2 was observed when mitochondria were impaired, either due to neurotoxicant exposure (MPTP) or Sod2 haploinsufficiency. In accordance, markers of oxidative stress, e.g., protein carbonylation and nitrotyrosination, were elevated in the cytosol but not in mitochondria from prkn-/- mice. Nevertheless, this rise in oxidative stress led to changes in mitochondrial enzyme activities and the metabolism of glutathione in cells and mammalian brain. In parkin’s absence reduced glutathione concentrations were increased including in human cortex. This compensation was not due to new glutathione synthesis but attributed to elevated oxidized glutathione (GSSG)-reductase activity. Moreover, we discovered that parkin also recycled GSSG to its reduced form. With this reaction, parkin became S-glutathionylated, e.g., at cysteines 59 and human-specific 95. This oxidative modification was reversed by glutaredoxin. Our results demonstrate that cytosolic parkin mediates anti-oxidant reactions including H2O2 reduction and glutathione regeneration. These reducing activities lead to a range of oxidative modifications in parkin itself. In parkin-deficient brain oxidative stress rises despite changes to maintain redox balance.


2006 ◽  
Vol 26 (13) ◽  
pp. 4895-4910 ◽  
Author(s):  
Laura V. Papp ◽  
Jun Lu ◽  
Frank Striebel ◽  
Derek Kennedy ◽  
Arne Holmgren ◽  
...  

ABSTRACT Selenoproteins are central controllers of cellular redox homeostasis. Incorporation of selenocysteine (Sec) into selenoproteins employs a unique mechanism to decode the UGA stop codon. The process requires the Sec insertion sequence (SECIS) element, tRNASec, and protein factors including the SECIS binding protein 2 (SBP2). Here, we report the characterization of motifs within SBP2 that regulate its subcellular localization and function. We show that SBP2 shuttles between the nucleus and the cytoplasm via intrinsic, functional nuclear localization signal and nuclear export signal motifs and that its nuclear export is dependent on the CRM1 pathway. Oxidative stress induces nuclear accumulation of SBP2 via oxidation of cysteine residues within a redox-sensitive cysteine-rich domain. These modifications are efficiently reversed in vitro by human thioredoxin and glutaredoxin, suggesting that these antioxidant systems might regulate redox status of SBP2 in vivo. Depletion of SBP2 in cell lines using small interfering RNA results in a decrease in Sec incorporation, providing direct evidence for its requirement for selenoprotein synthesis. Furthermore, Sec incorporation is reduced substantially after treatment of cells with agents that cause oxidative stress, suggesting that nuclear sequestration of SBP2 under such conditions may represent a mechanism to regulate the expression of selenoproteins.


2007 ◽  
Vol 282 (49) ◽  
pp. 35988-35999 ◽  
Author(s):  
Jiawen Wu ◽  
Yinshan Yang ◽  
Jiahai Zhang ◽  
Peng Ji ◽  
Wenjing Du ◽  
...  

Zonula occludens proteins (ZOs), including ZO1/2/3, are tight junction-associated proteins. Each of them contains three PDZ domains. It has been demonstrated that ZO1 can form either homodimers or heterodimers with ZO2 or ZO3 through the second PDZ domain. However, the underlying structural basis is not well understood. In this study, the solution structure of the second PDZ domain of ZO2 (ZO2-PDZ2) was determined using NMR spectroscopy. The results revealed a novel dimerization mode for PDZ domains via three-dimensional domain swapping, which can be generalized to homodimers of ZO1-PDZ2 or ZO3-PDZ2 and heterodimers of ZO1-PDZ2/ZO2-PDZ2 or ZO1-PDZ2/ZO3-PDZ2 due to high conservation between PDZ2 domains in ZO proteins. Furthermore, GST pulldown experiments and immunoprecipitation studies demonstrated that interactions between ZO1-PDZ2 and ZO2-PDZ2 and their self-associations indeed exist both in vitro and in vivo. Chemical cross-linking and dynamic laser light scattering experiments revealed that both ZO1-PDZ2 and ZO2-PDZ2 can form oligomers in solution. This PDZ domain-mediated oligomerization of ZOs may provide a structural basis for the polymerization of claudins, namely the formation of tight junctions.


Sign in / Sign up

Export Citation Format

Share Document