scholarly journals Association between Statin Use and Balance in Older Adults

Author(s):  
Antoine Langeard ◽  
Kathia Saillant ◽  
Elisabeth Charlebois Cloutier ◽  
Mathieu Gayda ◽  
Frédéric Lesage ◽  
...  

Background: Several medications have been associated with an increased risk of balance deficits and greater likelihood to sustain a fall, representing a large health and economic issue. Statins are regularly prescribed to prevent strokes and heart attacks, but their impact on balance is unknown. The aim of this paper was to determine whether statin use is associated with poorer balance performances in older adults. Methods: All participants, one group taking statins (n = 34), and the other group not taking statins (n = 31), completed a balance assessment with their eyes closed and their eyes opened on a MatScan Pressure Sensing Mat. Center of Pressure (CoP) velocity, peak-to-peak distance, and standard deviation were collected in both anteroposterior (AP) and mediolateral (ML) directions. Multiple linear regression analyses were performed for each balance outcome, testing the statin use status as a predictor and controlling for appropriate factors including participants characteristics, lipid profile, and cardiovascular disease. Results: After controlling for confounding factors, statin use significantly predicted both CoP ML-Amplitude (β = 0.638, p = 0.004) and ML-Velocity (β = 0.653, p = 0.002) in the eyes-opened condition. Conclusions: The present study detected a negative association between statin use and balance control in the ML direction, suggesting that caution should be taken when prescribing statins in older adults, as this could decrease ML stability and ultimately increase fall and fracture risks.

Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S27.2-S27
Author(s):  
Fernando Santos ◽  
Jaclyn B Caccese ◽  
Mariana Gongora ◽  
Ian Sotnek ◽  
Elizabeth Kaye ◽  
...  

Exposure to repetitive subconcussive head impacts (RSHI), specifically soccer heading, is associated with white matter microstructural changes and cognitive performance impairments. However, the effect of soccer heading exposure on vestibular processing and balance control during walking has not been studied. Galvanic vestibular stimulation (GVS) is a tool that can be used to probe the vestibular system during standing and walking. The purpose of this study was to investigate the association of soccer heading with subclinical balance deficits during walking. Twenty adult amateur soccer players (10 males and 10 females, 22.3 ± 4.5 years, 170.5 ± 9.8 cm, 70.0 ± 10.5 kg) walked along a foam walkway with the eyes closed under 2 conditions: with GVS (∼40 trials) and without GVS (∼40 trials). Outcome measures included mediolateral center-of-mass (COM), center-of-pressure (COP) separation, foot placement, mediolateral ankle modulation, hip adduction, and ankle push off. For each balance mechanism, a GVS response was calculated (GVS, mean [without GVS]). In addition, participants completed a questionnaire, reporting soccer heading exposure over the past year. A linear regression model was used to determine if vestibular processing and balance during walking were related to RSHI exposure. Both foot placement (R2 = 0.324, p = 0.009) and hip adduction (R2 = 0.183, p = 0.50) were predicted by RSHI; whereby, greater exposure to RSHI was associated with greater foot placement and hip adduction responses. However, COM-COP separation (R2 < 0.001, p = 0.927), ankle modulation (R2 = 0.037, p = 0.417), and push off (R2 < 0.001, p = 0.968) were not related to RSHI exposure. Individuals who were exposed to greater RSHI were more perturbed by vestibular stimulation during walking, suggesting that there may be vestibular dysfunction and balance impairments with frequent heading; specifically, individuals with greater exposure to RSHI responded with larger foot placement and hip adduction responses to GVS.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 63 ◽  
Author(s):  
Ilaria Mileti ◽  
Juri Taborri ◽  
Stefano Rossi ◽  
Zaccaria Del Prete ◽  
Marco Paoloni ◽  
...  

Maintaining balance stability while turning in a quasi-static stance and/or in dynamic motion requires proper recovery mechanisms to manage sudden center-of-mass displacement. Furthermore, falls during turning are among the main concerns of community-dwelling elderly population. This study investigates the effect of aging on reactive postural responses to continuous yaw perturbations on a cohort of 10 young adults (mean age 28 ± 3 years old) and 10 older adults (mean age 61 ± 4 years old). Subjects underwent external continuous yaw perturbations provided by the RotoBit1D platform. Different conditions of visual feedback (eyes opened and eyes closed) and perturbation intensity, i.e., sinusoidal rotations on the horizontal plane at different frequencies (0.2 Hz and 0.3 Hz), were applied. Kinematics of axial body segments was gathered using three inertial measurement units. In order to measure reactive postural responses, we measured body-absolute and joint absolute rotations, center-of-mass displacement, body sway, and inter-joint coordination. Older adults showed significant reduction in horizontal rotations of body segments and joints, as well as in center-of-mass displacement. Furthermore, older adults manifested a greater variability in reactive postural responses than younger adults. The abnormal reactive postural responses observed in older adults might contribute to the well-known age-related difficulty in dealing with balance control during turning.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 402 ◽  
Author(s):  
Juan De la Torre ◽  
Javier Marin ◽  
Marco Polo ◽  
José J. Marín

Balance disorders have a high prevalence among elderly people in developed countries, and falls resulting from balance disorders involve high healthcare costs. Therefore, tools and indicators are necessary to assess the response to treatments. Therefore, the aim of this study is to detect relevant changes through minimal detectable change (MDC) values in patients with balance disorders, specifically with vertigo. A test-retest of a static and dynamic balance test was conducted on 34 healthy young volunteer subjects using a portable stabilometric platform. Afterwards, in order to show the MDC applicability, eight patients diagnosed with balance disorders characterized by vertigo of vestibular origin performed the balance test before and after a treatment, contrasting the results with the assessment by a specialist physician. The balance test consisted of four tasks from the Romberg test for static balance control, assessing dynamic postural balance through the limits of stability (LOS). The results obtained in the test-retest show the reproducibility of the system as being similar to or better than those found in the literature. Regarding the static balance variables with the lowest MDC value, we highlight the average velocity of the center of pressure (COP) in all tasks and the root mean square (RMS), the area, and the mediolateral displacement in soft surface, with eyes closed. In LOS, all COP limits and the average speed of the COP and RMS were highlighted. Of the eight patients assessed, an agreement between the specialist physician and the balance test results exists in six of them, and for two of the patients, the specialist physician reported no progression, whereas the balance test showed worsening. Patients showed changes that exceeded the MDC values, and these changes were correlated with the results reported by the specialist physician. We conclude that (at least for these eight patients) certain variables were sufficiently sensitive to detect changes linked to balance progression. This is intended to improve decision making and individualized patient monitoring.


2017 ◽  
Vol 7 (26) ◽  
pp. 93-101
Author(s):  
Raluca Enache ◽  
Dorin Sarafoleanu ◽  
Codrut Sarafoleanu

Abstract BACKGROUND. Computerized dynamic posturography is the most important battery test designed to assess the ability to use visual, vestibular and proprioceptive cues in the maintenance of posture. Foam posturography reduces the availability of proprioceptive inputs, which makes more difficult the balance control. OBJECTIVE. The objective of the study was to assess the clinical use of foam posturography in evaluating peripheral vestibular dysfunction. MATERIAL AND METHODS. We evaluated 41 patients with vestibular disorders and 41 normal patients by using the sensory organization test in eyes opened, eyes closed and mislead vision conditions with and without the foam. We measured several parameters: the position of the center of pressure, the displacement in the center of pressure in anteroposterior and mediolateral planes and Romberg’s ratio on static and foam rubber. RESULTS. The values of all parameters were significantly higher in patients with peripheral vestibular disorders than in the control group (p<0.05). Also. comparing the Romberg test results, the foam surface used by the patient was larger than the static one. CONCLUSION. Foam posturography can be a reliable test in assessing patients with peripheral vestibulopathy, being also able to identify the visual and proprioceptive dependence levels.


2009 ◽  
Vol 89 (5) ◽  
pp. 484-498 ◽  
Author(s):  
Fay B Horak ◽  
Diane M Wrisley ◽  
James Frank

BackgroundCurrent clinical balance assessment tools do not aim to help therapists identify the underlying postural control systems responsible for poor functional balance. By identifying the disordered systems underlying balance control, therapists can direct specific types of intervention for different types of balance problems.ObjectiveThe goal of this study was to develop a clinical balance assessment tool that aims to target 6 different balance control systems so that specific rehabilitation approaches can be designed for different balance deficits. This article presents the theoretical framework, interrater reliability, and preliminary concurrent validity for this new instrument, the Balance Evaluation Systems Test (BESTest).DesignThe BESTest consists of 36 items, grouped into 6 systems: “Biomechanical Constraints,” “Stability Limits/Verticality,” “Anticipatory Postural Adjustments,” “Postural Responses,” “Sensory Orientation,” and “Stability in Gait.”MethodsIn 2 interrater trials, 22 subjects with and without balance disorders, ranging in age from 50 to 88 years, were rated concurrently on the BESTest by 19 therapists, students, and balance researchers. Concurrent validity was measured by correlation between the BESTest and balance confidence, as assessed with the Activities-specific Balance Confidence (ABC) Scale.ResultsConsistent with our theoretical framework, subjects with different diagnoses scored poorly on different sections of the BESTest. The intraclass correlation coefficient (ICC) for interrater reliability for the test as a whole was .91, with the 6 section ICCs ranging from .79 to .96. The Kendall coefficient of concordance among raters ranged from .46 to 1.00 for the 36 individual items. Concurrent validity of the correlation between the BESTest and the ABC Scale was r=.636, P&lt;.01.LimitationsFurther testing is needed to determine whether: (1) the sections of the BESTest actually detect independent balance deficits, (2) other systems important for balance control should be added, and (3) a shorter version of the test is possible by eliminating redundant or insensitive items.ConclusionsThe BESTest is easy to learn to administer, with excellent reliability and very good validity. It is unique in allowing clinicians to determine the type of balance problems to direct specific treatments for their patients. By organizing clinical balance test items already in use, combined with new items not currently available, the BESTest is the most comprehensive clinical balance tool available and warrants further development.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Hossein Talebi ◽  
Mohammad Taghi Karimi ◽  
Seyed Hamid Reza Abtahi ◽  
Niloofar Fereshtenejad

Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments.Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50±7). We evaluated excursion and velocity of center of pressure (COP) and path length in anteroposterior (AP) and mediolateral (ML) planes with eyes open and with eyes closed.Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (pvalue > 0.05). In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (pvalue < 0.05).Conclusions. The present study showed the static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11221
Author(s):  
Daniel Schmidt ◽  
Felipe P. Carpes ◽  
Thomas L. Milani ◽  
Andresa M.C. Germano

Background Studies demonstrated that the older adults can be more susceptible to balance instability after acute visual manipulation. There are different manipulation approaches used to investigate the importance of visual inputs on balance, e.g., eyes closed and blackout glasses. However, there is evidence that eyes open versus eyes closed results in a different organization of human brain functional networks. It is, however, unclear how different visual manipulations affect balance, and whether such effects differ between young and elderly persons. Therefore, this study aimed to determine whether different visual manipulation approaches affect quasi-static and dynamic balance responses differently, and to investigate whether balance responses of young and older adults are affected differently by these various visual conditions. Methods Thirty-six healthy participants (20 young and 16 older adults) performed balance tests (quasi-static and unexpected perturbations) under four visual conditions: Eyes Open, Eyes Closed, Blackout Glasses, and Dark Room. Center of pressure (CoP) and muscle activation (EMG) were quantified. Results As expected, visual deprivation resulted in larger CoP excursions and higher muscle activations during balance tests for all participants. Surprisingly, the visual manipulation approach did not influence balance control in either group. Furthermore, quasi-static and dynamic balance control did not differ between young or older adults. The visual system plays an important role in balance control, however, similarly for both young and older adults. Different visual deprivation approaches did not influence balance results, meaning our results are comparable between participants of different ages. Further studies should investigate whether a critical illumination level may elicit different postural responses between young and older adults.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 1043-1044
Author(s):  
Haley Hicks ◽  
Anthony McBroom ◽  
Patrick Roscher ◽  
Jessie VanSwearingen ◽  
Kristin Lowry

Abstract Although it is essential to navigating the world, curved path walking is a challenge to mediolateral balance control. The focus of previous curved-path walking research was in spatiotemporal characteristics. We quantified the foot-ground interaction, center of pressure (COP) characteristics during non-linear (eg curved-path) walking important to understand the functional mechanics of directional changes for curved paths. We hypothesized the foot mechanics differ between older adults with better versus poorer curved-path walking (Figure of 8 Walk Test, F8W). Twenty-five older adults (mean age 71.8 ± 8.9 years) completed the F8W on an instrumented walkway (Protokinetics, LLC.) The derived metrics of the foot mechanics included medial/lateral movement of the COP for inside and outside steps, maximum medial and lateral COP excursions, and total medial/lateral COP range. Pearson correlations were used to examine relations F8W (time and steps) and COP metrics; ANOVAs were used to examine differences in COP metrics between older adults grouped by median-split of F8W time. Longer F8W time and more steps were related to lesser total COP range and outside foot lateral maximum excursion (r range -0.415 to -0.706, p&lt;0.04). Older adults with stronger F8W performance compared to poorer F8W performance had larger outside foot total COP ranges (3.61cm vs 4.39cm, p=0.016) and greater lateral excursion (1.60cm vs 2.12cm, p=0,003). Foot-ground interactions offer new insights into control of curved path walking and methods for evaluating efficacy of interventions focused on improving walking skill in older adults.


2017 ◽  
Vol 35 (5_suppl) ◽  
pp. 128-128 ◽  
Author(s):  
Haley K. Herman ◽  
Scott M. Monfort ◽  
Xueliang Jeff Pan ◽  
Ajit M.W. Chaudhari ◽  
Maryam B. Lustberg

128 Background: Advances in screening and treatment have significantly improved the survival of cancer patients. However, chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity of curative treatment; many patients either cannot complete planned course of treatment or have long standing effects on quality of life. CIPN has been shown to lead to pain, falls, and difficulty walking. Balance changes have been reported with other neuropathies but have not been investigated in depth in cancer patients. This study aims to improve our understanding of changes in postural control associated with CIPN. We hypothesize that patients who report more significant CIPN symptoms will perform more poorly on balance testing. Methods: Eleven cancer patients were enrolled (9 female/ 2 male; 9 breast cancer/ 2 GI cancer; 1.67 ± 0.05 m; 85.8 ± 19.3 kg; 56.5 ± 14.5 yrs). These patients included cases (n = 7), tested within 6 weeks of finishing taxane or oxaliplatin chemotherapy, and controls (n = 4) who did not receive chemotherapy. Patients’ sensory symptoms were assessed by EORTC QLQ-CIPN20. Standing on a balance plate, patients were instructed to close their eyes and remain still while their center of pressure (CoP) was recorded. Medial-lateral root mean squared CoP excursion (RMS) was calculated to provide a measure of postural stability, with higher values indicating poorer control of CoP position and being predictive of falls. Results: Groups were not statistically different in terms of height, mass, or age (p > 0.1). Cases had an average of 3.8 mm (95% CI: 1.7 mm, 6.0 mm) increase in RMS over controls (p = 0.004). Furthermore, cases scored an average of 37.6 points (95% CI: 19.5 points, 55.7 points) lower on a normalized CIPN 20 scale, suggesting worse sensory symptoms (p = 0.002). Conclusions: Patients with CIPN symptoms displayed significantly poorer control of their CoP. This supports the hypothesis that CIPN symptoms associate with poorer balance. The balance deficits reported here are consistent with increased risk of falls and negative post-treatment sequelae. This further suggests a need for closer monitoring and even targeted balance-focused rehabilitation following chemotherapy.


2017 ◽  
Vol 5 (3) ◽  
pp. 232596711769550 ◽  
Author(s):  
Coralie Rochefort ◽  
Coren Walters-Stewart ◽  
Mary Aglipay ◽  
Nick Barrowman ◽  
Roger Zemek ◽  
...  

Background: The Balance Error Scoring System (BESS) shows that balance tends to recover within days after a concussion, whereas measures of the movement of the center of pressure (COP) show that balance deficits can persist up to 1 month after concussion. While approximately 30% of adolescents suffering concussion have functional consequences including balance deficits, evidence of the use of different balance assessments for concussion is limited within this population. Purpose: To compare performance on a series of balance assessments between adolescents with a diagnosed concussion at 1 month postinjury and noninjured control participants within the same age distribution. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Thirty-three adolescents 1 month postconcussion and 33 control participants completed the BESS followed by two, 2-minute trials standing on a Nintendo Wii Balance Board (WBB), during which the COP under their feet was recorded using 2 testing protocols: (1) double-leg stance, eyes open (EO) and (2) double-leg stance, eyes closed (EC). Participants then completed a dual-task condition (DT) with eyes open combining a double-leg stance and a Stroop color and word test while standing on the WBB. Three commonly used COP variables, anterior-posterior (A/P) and mediolateral (M/L) velocity and 95% ellipse, were computed for each condition performed on the WBB. Results: Participants postconcussion swayed over a significantly larger ellipse area compared with the control group in the EO ( P = .008), EC ( P = .002), and DT ( P = .003) conditions and also performed the DT condition with faster COP velocity in the M/L direction ( P = .007). No significant group difference was identified for BESS total score. Conclusion: At 1 month postconcussion, participants continued to demonstrate balance deficits in COP control despite scoring similar to controls on the BESS. Simple COP measures of balance may identify subtle impairments not captured by the BESS.


Sign in / Sign up

Export Citation Format

Share Document