scholarly journals Different Doses of Carbohydrate Mouth Rinse Have No Effect on Exercise Performance in Resistance Trained Women

Author(s):  
Raci Karayigit ◽  
Scott C. Forbes ◽  
Alireza Naderi ◽  
Darren G. Candow ◽  
Ulas C. Yildirim ◽  
...  

Carbohydrate (CHO) mouth rinse has been shown to enhance aerobic endurance performance. However, the effects of CHO mouth rinse on muscular strength and endurance are mixed and may be dependent on dosage of CHO. The primary purpose was to examine the effects of different dosages of CHO rinse on strength (bench press 1 repetition maximum [1-RM]) and muscular endurance (40% of 1-RM repetitions to failure) in female athletes. Sixteen resistance-trained females (age: 20 ± 1 years; height: 167 ± 3 cm; body mass: 67 ± 4 kg; BMI: 17 ± 2 kg/m2; resistance training experience: 2 ± 1 years) completed four conditions in random order. The four conditions consisted of a mouth rinse with 25 mL solutions containing either 6% of CHO (Low dose of CHO: LCHO), 12% CHO (Moderate dose of CHO: MCHO), 18% CHO (High dose of CHO: HCHO) or water (Placebo: PLA) for 10 s prior to a bench press strength and muscular endurance test. Maximal strength (1-RM), muscular endurance (reps and total volume), heart rate (HR), ratings of perceived exertion (RPE) and glucose (GLU) were recorded each condition. There were no significant differences in strength (p = 0.95) or muscular endurance (total repetitions: p = 0.06; total volume: p = 0.20) between conditions. Similarly, HR (p = 0.69), RPE (p = 0.09) and GLU (p = 0.92) did not differ between conditions. In conclusion, various doses of CHO mouth rinse (6%, 12% and 18%) have no effect on upper body muscular strength or muscular endurance in female athletes.

Author(s):  
Raci Karayigit ◽  
Ajmol Ali ◽  
Sajjad Rezaei ◽  
Gulfem Ersoz ◽  
Angel Lago-Rodriguez ◽  
...  

Abstract Background Carbohydrate (CHO) and caffeine (CAF) mouth rinsing have been shown to enhance endurance and sprint performance. However, the effects of CHO and CAF mouth rinsing on muscular and cognitive performance in comparison between male and female athletes are less well-established. The aim of this study was to examine the effect of CHO and CAF rinsing on squat and bench press 1 repetition maximum (1-RM) strength, 3 sets of 40% of 1-RM muscular endurance and cognitive performance in both male and female athletes. Methods Thirteen male and fourteen female resistance-trained participants completed four testing sessions following the rinsing of 25 ml of i) 6% of CHO (1.5 g); ii) 2% CAF (500 mg), iii) combined CHO and CAF (CHOCAF) solutions or iv) water (PLA) for 10 s. Heart rate (HR), felt arousal (FA), ratings of perceived exertion (RPE) and glucose (GLU) were recorded throughout the test protocol. Results There were no significant differences in squat and bench press 1-RM, HR, RPE and GLU (p > 0.05) for males and females, respectively. FA was significantly increased with CAF (p = 0.04, p = 0.01) and CHOCAF (p = 0.03, p = 0.01) condition in both males and females, respectively. Squat endurance performance in the first set was significantly increased with CHOCAF condition compared to PLA in both males (p = 0.01) and females (p = 0.02). Bench press endurance was similar for all conditions in both genders (p > 0.05). Cognitive performance was significantly increased with CHOCAF compared to PLA in males (p = 0.03) and females (p = 0.02). Conclusion Combined CHO and CAF mouth rinsing significantly improved lower body muscular endurance and cognitive performance in both males and females.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10781
Author(s):  
Emil Johnsen ◽  
Roland van den Tillaar

Background In resistance training, the role of training frequency to increase maximal strength is often debated. However, the limited data available does not allow for clear training frequency “optimization” recommendations. The purpose of this study was to investigate the effects of training frequency on maximal muscular strength and rate of perceived exertion (RPE). The total weekly training volume was equally distributed between two and four sessions per muscle group. Methods Twenty-one experienced resistance-trained male subjects (height: 1.85 ± 0.06 m, body mass: 85.3 ± 12.3 kg, age: 27.6 ± 7.6 years) were tested prior to and after an 8-week training period in one-repetition maximum (1RM) barbell back squat and bench press. Subjects were randomly assigned to a SPLIT group (n = 10), in which there were two training sessions of squats and lower-body exercises and two training sessions of bench press and upper-body exercises, or a FULLBODY group (n = 11), in which four sessions with squats, bench press and supplementary exercises were conducted every session. In each session, the subjects rated their RPE after barbell back squat, bench press, and the full session. Results Both groups significantly increased 1RM strength in barbell back squat (SPLIT group: +13.25 kg; FULLBODY group: +14.31 kg) and bench press (SPLIT group: +7.75 kg; FULLBODY group: +8.86 kg) but training frequency did not affect this increase for squat (p = 0.640) or bench press (p = 0.431). Both groups showed a significant effect for time on RPE on all three measurements. The analyses showed only an interaction effect between groups on time for the RPE after the squat exercise (p = 0.002). Conclusion We conclude that there are no additional benefits of increasing the training frequency from two to four sessions under volume-equated conditions, but it could be favorable to spread the total training volume into several training bouts through the week to avoid potential increases in RPE, especially after the squat exercise.


Author(s):  
Ben M. Krings ◽  
Brandon D. Shepherd ◽  
Hunter S. Waldman ◽  
Matthew J. McAllister ◽  
JohnEric W. Smith

Carbohydrate mouth rinsing has been shown to enhance aerobic exercise performance, but there is limited research with resistance exercise (RE). Therefore, the purpose of this investigation was to examine the effects of carbohydrate mouth rinsing during a high-volume upper body RE protocol on performance, heart rate responses, ratings of perceived exertion, and felt arousal. Recreationally experienced resistance-trained males (N = 17, age: 21 ± 1 years, height: 177.3 ± 5.2 cm, mass: 83.5 ± 9.3 kg) completed three experimental sessions, with the first serving as familiarization to the RE protocol. During the final two trials, the participants rinsed a 25-ml solution containing either a 6% carbohydrate solution or an artificially flavored placebo in a randomized, counterbalanced, and double-blinded fashion. The participants rinsed a total of nine times immediately before beginning the protocol and 20 s before repetitions to failure with the exercises bench press, bent-over row, incline bench press, close-grip row, hammer curls, skull crushers (all completed at 70% one-repetition maximum), push-ups, and pull-ups. Heart rate, ratings of perceived exertion, and felt arousal were measured at the baseline and immediately after each set of repetitions to failure. There were no differences for the total repetitions completed (carbohydrate = 203 ± 25 repetitions vs. placebo = 201 ± 23 repetitions, p = .46, Cohen’s d = 0.10). No treatment differences were observed for heart rate, ratings of perceived exertion, or felt arousal (p > .05). Although carbohydrate mouth rinsing has been shown to be effective in increasing aerobic performance, the results from this investigation show no benefit in RE performance in resistance-trained males.


2021 ◽  

Background and objective: The purpose of this study was to investigate the effect of specific warm-up on squat and bench press resistance training. Methods: Thirty-four resistance-trained males (23.53 ± 2.35 years) participated in the current study. Among these, 12 were evaluated in the squat and 22 in the bench press. After determining the maximal strength load (1RM), each participant performed a training set (3 × 6 repetitions) with 80%1RM (training load) after completing a specific warm-up and without warming up, in random order. The warm-up comprised 2 × 6 repetitions with 40% and 80% of the training load, respectively. Mean propulsive velocity, velocity loss, peak velocity, mechanical power, work, heart rate and ratings of perceived exertion were assessed. Results: The results showed that after the warm-up, the participants were able to perform the squat and bench press at a higher mean propulsive velocity in the first set (squat: 0.68 ± 0.05 vs. 0.64 ± 0.06 m·s−1, p = 0.009, ES = 0.91; bench press: 0.52 ± 0.06 vs. 0.47 ± 0.08 m·s−1, p = 0.02, ES = 0.56). The warm-up positively influenced the peak velocity (1.32 ± 0.12 vs. 1.20 ± 0.11 m·s−1, p = 0.001, ES = 1.23) and the time to reach peak velocity (593.75 ± 117.01 vs. 653.58 ± 156.53 ms, p = 0.009, ES = 0.91) during the squat set. Conclusion: The specific warm-up seems to enhance neuromuscular actions that enable a higher movement velocity during the first training repetitions and to allow greater peak velocities in less time.


2016 ◽  
Vol 28 (2) ◽  
pp. 331-340 ◽  
Author(s):  
Jorge R. Fernandez-Santos ◽  
Jonatan R. Ruiz ◽  
Jose Luis Gonzalez-Montesinos ◽  
Jose Castro-Piñero

The aim of this study was to analyze the reliability and the validity of the handgrip, basketball throw and pushups tests in children aged 6–12 years. One hundred and eighty healthy children (82 girls) agreed to participate in this study. All the upper body muscular fitness tests were performed twice (7 days apart) whereas the 1 repetition maximum (1RM) bench press test was performed 2 days after the first session of testing. All the tests showed a high reproducibility (ICC > 0.9) except the push-ups test (intertrial difference = 0.77 ± 2.38, p < .001 and the percentage error = 9%). The handgrip test showed the highest association with 1RM bench press test (r = .79, p < .01; R2 = .621). In conclusion the handgrip and basketball throw tests are shown as reliable and valid tests to assess upper body muscular strength in children. More studies are needed to assess the validity and the reliability of the upper body muscular endurance tests in children.


Kinesiology ◽  
2016 ◽  
Vol 48 (1) ◽  
pp. 87-94 ◽  
Author(s):  
David Valadés ◽  
José Manuel Palao ◽  
Ángel Aúnsolo ◽  
Aurelio Ureña

The aim of this paper was to study the relationship between spike speed and the players’ characteristics, anthropometrics, and strength levels throughout the season for a women’s professional volleyball team. Players from a Spanish first division team performed a battery of tests evaluating anthropometric characteristics, strength performance, and spike speed at the beginning, in the middle, and at the end of one competitive season. The variables were: age; training experience; height; one-hand standing reach height; body mass; body mass index; height of the vertical jump with an approach (spike jump); muscle percentage of arms; 1 repetition maximum (1RM) bench press; 1RM pullover; overhead medicine ball throws for distance using 1, 2, 3, 4, and 5 kg; spike angles; and speed of standing and jump spikes. Results showed that players’ general strength (bench press and pullover) and power parameters (medicine ball throws) increased throughout theseason, while speed of the jump did not improve. The variable that best predicted the jump spike speed at all the three time points in the season was the standing spike speed. The players’ training increased their strength and upper-body power, but these improvements were not transferred to players’ hitting speed ability. Push-pull and throwing exercises were not specific enough to improve the hitting ability of the female senior volleyball players.


Author(s):  
Kyle R. Cesareo ◽  
Justin R. Mason ◽  
Patrick G. Saracino ◽  
Margaret C. Morrissey ◽  
Michael J. Ormsbee

Abstract Background TeaCrine® is the synthetic version to naturally occurring theacrine (1, 3, 7, 9-tetramethyluric acid) found in the leaves of Camellia kucha tea plants. A few studies have examined the effects of TeaCrine® on cognitive perception, but no research exists examining its effects on resistance exercise performance. The purpose of this study was to determine the efficacy of TeaCrine®, a caffeine-like compound, on maximal muscular strength, endurance, and power performance in resistance-trained men. Methods Twelve resistance-trained men participated in a randomized, double-blind, cross-over designed study. Each participant performed one-repetition maximum (1RM) bench press, 1RM squat, bench press repetitions to failure (RTF) at 70% 1RM, squat RTF at 70% 1RM, and 2-km rowing time trial 90 min after consumption of: (1) Caffeine 300 mg (CAFF300); (2) TeaCrine® 300 mg (TEA300); (3) TeaCrine® + Caffeine (COMBO; 150 mg/150 mg); (4) Placebo 300 mg (PLA). Power and velocity were measured using a TENDO Power Analyzer. Visual analogue scales for energy, focus, motivation to exercise, and fatigue were administered at baseline and 90 min post-treatment ingestion (pre-workout). Rating of perceived exertion was assessed after bench press RTF and squat RTF. Results There were no differences between groups for 1RM, RTF, and power in the bench press and squat exercises. Only CAFF300 resulted in significant increases in perceived energy and motivation to exercise vs. TEA300 and PLA (Energy: + 9.8%, 95% confidence interval [3.3–16.4%], p < 0.01; + 15.3%, 95% CI [2.2–28.5%], p < 0.02; Motivation to exercise: + 8.9%, 95% CI [0.2–17.6%], p = 0.04, + 14.8%, 95% CI [4.7–24.8%], p < 0.01, respectively) and increased focus (+ 9.6%, 95% CI [2.1–17.1%], p = 0.01) vs. TEA300, but there were no significant differences between CAFF300 and COMBO (Energy + 3.9% [− 6.9–14.7%], Focus + 2.5% [− 6.3–11.3%], Motivation to exercise + 0.5% [− 11.6–12.6%]; p > 0.05). Conclusion Neither TEA300, CAFF300, COMBO, or PLA (when consumed 90 min pre-exercise) improved muscular strength, power, or endurance performance in resistance-trained men. Only CAFF300 improved measures of focus, energy, and motivation to exercise.


Sign in / Sign up

Export Citation Format

Share Document