scholarly journals Effects of training frequency on muscular strength for trained men under volume matched conditions

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10781
Author(s):  
Emil Johnsen ◽  
Roland van den Tillaar

Background In resistance training, the role of training frequency to increase maximal strength is often debated. However, the limited data available does not allow for clear training frequency “optimization” recommendations. The purpose of this study was to investigate the effects of training frequency on maximal muscular strength and rate of perceived exertion (RPE). The total weekly training volume was equally distributed between two and four sessions per muscle group. Methods Twenty-one experienced resistance-trained male subjects (height: 1.85 ± 0.06 m, body mass: 85.3 ± 12.3 kg, age: 27.6 ± 7.6 years) were tested prior to and after an 8-week training period in one-repetition maximum (1RM) barbell back squat and bench press. Subjects were randomly assigned to a SPLIT group (n = 10), in which there were two training sessions of squats and lower-body exercises and two training sessions of bench press and upper-body exercises, or a FULLBODY group (n = 11), in which four sessions with squats, bench press and supplementary exercises were conducted every session. In each session, the subjects rated their RPE after barbell back squat, bench press, and the full session. Results Both groups significantly increased 1RM strength in barbell back squat (SPLIT group: +13.25 kg; FULLBODY group: +14.31 kg) and bench press (SPLIT group: +7.75 kg; FULLBODY group: +8.86 kg) but training frequency did not affect this increase for squat (p = 0.640) or bench press (p = 0.431). Both groups showed a significant effect for time on RPE on all three measurements. The analyses showed only an interaction effect between groups on time for the RPE after the squat exercise (p = 0.002). Conclusion We conclude that there are no additional benefits of increasing the training frequency from two to four sessions under volume-equated conditions, but it could be favorable to spread the total training volume into several training bouts through the week to avoid potential increases in RPE, especially after the squat exercise.

Author(s):  
Raci Karayigit ◽  
Scott C. Forbes ◽  
Alireza Naderi ◽  
Darren G. Candow ◽  
Ulas C. Yildirim ◽  
...  

Carbohydrate (CHO) mouth rinse has been shown to enhance aerobic endurance performance. However, the effects of CHO mouth rinse on muscular strength and endurance are mixed and may be dependent on dosage of CHO. The primary purpose was to examine the effects of different dosages of CHO rinse on strength (bench press 1 repetition maximum [1-RM]) and muscular endurance (40% of 1-RM repetitions to failure) in female athletes. Sixteen resistance-trained females (age: 20 ± 1 years; height: 167 ± 3 cm; body mass: 67 ± 4 kg; BMI: 17 ± 2 kg/m2; resistance training experience: 2 ± 1 years) completed four conditions in random order. The four conditions consisted of a mouth rinse with 25 mL solutions containing either 6% of CHO (Low dose of CHO: LCHO), 12% CHO (Moderate dose of CHO: MCHO), 18% CHO (High dose of CHO: HCHO) or water (Placebo: PLA) for 10 s prior to a bench press strength and muscular endurance test. Maximal strength (1-RM), muscular endurance (reps and total volume), heart rate (HR), ratings of perceived exertion (RPE) and glucose (GLU) were recorded each condition. There were no significant differences in strength (p = 0.95) or muscular endurance (total repetitions: p = 0.06; total volume: p = 0.20) between conditions. Similarly, HR (p = 0.69), RPE (p = 0.09) and GLU (p = 0.92) did not differ between conditions. In conclusion, various doses of CHO mouth rinse (6%, 12% and 18%) have no effect on upper body muscular strength or muscular endurance in female athletes.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Guilherme Moraes Rodrigues ◽  
Sérgio Machado ◽  
Lucas Antunes Faria Vieira ◽  
Bruno Ribeiro Ramalho de Oliveira ◽  
Marco Antonio Jesus Abreu ◽  
...  

Author(s):  
Ben M. Krings ◽  
Brandon D. Shepherd ◽  
Hunter S. Waldman ◽  
Matthew J. McAllister ◽  
JohnEric W. Smith

Carbohydrate mouth rinsing has been shown to enhance aerobic exercise performance, but there is limited research with resistance exercise (RE). Therefore, the purpose of this investigation was to examine the effects of carbohydrate mouth rinsing during a high-volume upper body RE protocol on performance, heart rate responses, ratings of perceived exertion, and felt arousal. Recreationally experienced resistance-trained males (N = 17, age: 21 ± 1 years, height: 177.3 ± 5.2 cm, mass: 83.5 ± 9.3 kg) completed three experimental sessions, with the first serving as familiarization to the RE protocol. During the final two trials, the participants rinsed a 25-ml solution containing either a 6% carbohydrate solution or an artificially flavored placebo in a randomized, counterbalanced, and double-blinded fashion. The participants rinsed a total of nine times immediately before beginning the protocol and 20 s before repetitions to failure with the exercises bench press, bent-over row, incline bench press, close-grip row, hammer curls, skull crushers (all completed at 70% one-repetition maximum), push-ups, and pull-ups. Heart rate, ratings of perceived exertion, and felt arousal were measured at the baseline and immediately after each set of repetitions to failure. There were no differences for the total repetitions completed (carbohydrate = 203 ± 25 repetitions vs. placebo = 201 ± 23 repetitions, p = .46, Cohen’s d = 0.10). No treatment differences were observed for heart rate, ratings of perceived exertion, or felt arousal (p > .05). Although carbohydrate mouth rinsing has been shown to be effective in increasing aerobic performance, the results from this investigation show no benefit in RE performance in resistance-trained males.


2015 ◽  
Vol 10 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Espen Tønnessen ◽  
Ida S. Svendsen ◽  
Bent R. Rønnestad ◽  
Jonny Hisdal ◽  
Thomas A. Haugen ◽  
...  

One year of training data from 8 elite orienteers were divided into a transition phase (TP), general preparatory phase (GPP), specific preparatory phase (SPP), and competition phase (CP). Average weekly training volume and frequency, hours at different intensities (zones 1–3), cross-training, running, orienteering, interval training, continuous training, and competition were calculated. Training volume was higher in GPP than TP, SPP, and CP (14.9 vs 9.7, 11.5, and 10.6 h/wk, P < .05). Training frequency was higher in GPP than TP (10 vs 7.5 sessions/wk, P < .05). Zone 1 training was higher in GPP than TP, SPP, and CP (11.3 vs 7.1, 8.3, and 7.7 h/wk, P < .05). Zone 3 training was higher in SPP and CP than in TP and GPP (0.9 and 1.1 vs 1.6 and 1.5 h/wk, P < .05). Cross-training was higher in GPP than SPP and CP (4.3 vs 0.8 h/wk, P < .05). Interval training was higher in GPP than TP, SPP, and CP (0.7 vs 0.3 h/wk, P < .05). High-intensity continuous training was higher in GPP than CP (0.9 vs 0.4 h/wk, P < .05), while competition was higher in SPP and CP than in TP and GPP (1.3 and 1.5 vs 0.6 and 0.3 h/wk, P < .01). In conclusion, these champion endurance athletes achieved a progressive reduction in total training volume from GPP to CP via a shortening of each individual session while the number of training sessions remained unchanged. This decrease in training volume was primarily due to a reduction in the number of hours of low-intensity, non-sport-specific cross-training.


2020 ◽  
pp. 003151252095893
Author(s):  
Victor Sabino de Queiros ◽  
Matheus Dantas ◽  
Leonardo de Sousa Fortes ◽  
Luiz Felipe da Silva ◽  
Gilson Mendes da Silva ◽  
...  

The present study aimed to determine the effect of mental fatigue (MF) on total training volume (TTV; number of repetitions x number of sets x load) and on ratings of perceived exertion (RPE; Borg, 1982 ) in the half-back squat exercise (HBSE). Nine male subjects ( M age = 22.6 years, SD =  2.3; M height = 172.3 cm , SD =  6.8; M weight = 76.2 kg , SD =  9.8; M years of resistance training experience = 4.1, SD = 2.3 years) recruited from a university population were study participants in this participant-blind cross-over and randomized study. Participants underwent either the Stroop task – a highly demanding cognitive task (CT) – or a control condition (CON) in which they viewed a documentary exhibition for 30 minutes. Perception of MF and motivation were assessed after treatments using a visual analog scale of 100 mm. Participants then engaged in a countermovement jump (CMJ) test and three sets of HBSE until they reached momentary concentric failure, reporting RPE at the end of each exercise set. Following the CT, participants showed a significantly increased self-perception of MF in relation to the CON condition ( p = 0.01; d = 1.2), but this did not affect their motivation to engage in subsequent tests ( p = 0.99; d = 0.006). Neither the CMJ performances nor the RPE were statistically different between CT and CON conditions ( p = 0.33; d = 0.09 and p = 0.20 ; η2 = 0.20, respectively). TTV was significantly lower in the CT relative to the CON experimental condition (Δ = −15.8%; p = 0.04; η2 = 0.48). Prolonged involvement in a CT was associated with reduced volume on a resistance exercise, though this effect was not associated with changes in CMJ performance or motivation to exercise.


Author(s):  
Bruno Ribeiro ◽  
Ana Pereira ◽  
Pedro P. Neves ◽  
António C. Sousa ◽  
Ricardo Ferraz ◽  
...  

The current study aims to verify the effects of three specific warm-ups on squat and bench press resistance training. Forty resistance-trained males (19–30 years) performed 3 × 6 repetitions with 80% of maximal dynamic strength (designated as training load) after one of the following warm-ups (48 h between): (i) 2 × 6 repetitions with 40% and 80% of the training load (WU), (ii) 6 × 80% of training load (WU80), or (iii) 6 × 40% of the training load (WU40). Mean propulsive velocity (MPV), velocity loss (VL), peak velocity (PV), time to achieve PV, power, work, heart rates, and ratings of perceived exertion were analyzed. In squat exercises, higher MPV were found in WU80 compared with WU40 (2nd set: 0.69 ± 0.09 vs. 0.67 ± 0.06 m.s−1, p = 0.02, ES = 0.80; 3rd set: 0.68 ± 0.09 vs. 0.66 ± 0.07 m.s−1, p = 0.05, ES = 0.51). In bench press exercises, time to PV was lower in WU compared with WU40 (1st set: 574.77 ± 233.46 vs. 694.50 ± 211.71 m.s−1, p < 0.01, ES = 0.69; 2nd set: 533.19 ± 272.22 vs. 662.31 ± 257.51 m.s−1, p = 0.04, ES = 0.43) and total work was higher (4749.90 ± 1312.99 vs. 4631.80 ± 1355.01 j, p = 0.01, ES = 0.54). The results showed that force outputs were mainly optimized by WU80 in squat training and by WU in bench press training. Moreover, warming-up with few repetitions and low loads is not enough to optimize squat and bench press performances.


2016 ◽  
Vol 28 (2) ◽  
pp. 331-340 ◽  
Author(s):  
Jorge R. Fernandez-Santos ◽  
Jonatan R. Ruiz ◽  
Jose Luis Gonzalez-Montesinos ◽  
Jose Castro-Piñero

The aim of this study was to analyze the reliability and the validity of the handgrip, basketball throw and pushups tests in children aged 6–12 years. One hundred and eighty healthy children (82 girls) agreed to participate in this study. All the upper body muscular fitness tests were performed twice (7 days apart) whereas the 1 repetition maximum (1RM) bench press test was performed 2 days after the first session of testing. All the tests showed a high reproducibility (ICC > 0.9) except the push-ups test (intertrial difference = 0.77 ± 2.38, p < .001 and the percentage error = 9%). The handgrip test showed the highest association with 1RM bench press test (r = .79, p < .01; R2 = .621). In conclusion the handgrip and basketball throw tests are shown as reliable and valid tests to assess upper body muscular strength in children. More studies are needed to assess the validity and the reliability of the upper body muscular endurance tests in children.


2022 ◽  
Vol 12 ◽  
Author(s):  
Håvard Hamarsland ◽  
Hermann Moen ◽  
Ole Johannes Skaar ◽  
Preben Wahlstrøm Jorang ◽  
Håvard Saeterøy Rødahl ◽  
...  

The main goal of the current study was to compare the effects of volume-equated training frequency on gains in muscle mass and strength. In addition, we aimed to investigate whether the effect of training frequency was affected by the complexity, concerning the degrees of freedom, of an exercise. Participants were randomized to a moderate training frequency group (two weekly sessions) or high training frequency group (four weekly sessions). Twenty-one participants (male: 11, female: 10, age: 25.9 ± 4.0) completed the 9-week whole-body progressive heavy resistance training intervention with moderate (n = 13) or high (n = 8) training frequency. Whole-body and regional changes in lean mass were measured using dual-energy x-ray absorptiometry, while the vastus lateralis thickness was measured by ultrasound. Changes in muscle strength were measured as one repetition maximum for squat, hack squat, bench press, and chest press. No differences between groups were observed for any of the measures of muscle growth or muscle strength. Muscle strength increased to a greater extent in hack squat and chest press than squat and bench press for both moderate (50 and 21% vs. 19 and 14%, respectively) and high-frequency groups (63 and 31% vs. 19 and 16%, respectively), with no differences between groups. These results suggest that training frequency is less decisive when weekly training volume is equated. Further, familiarity with an exercise seems to be of greater importance for strength adaptations than the complexity of the exercise.


Author(s):  
Kyle R. Cesareo ◽  
Justin R. Mason ◽  
Patrick G. Saracino ◽  
Margaret C. Morrissey ◽  
Michael J. Ormsbee

Abstract Background TeaCrine® is the synthetic version to naturally occurring theacrine (1, 3, 7, 9-tetramethyluric acid) found in the leaves of Camellia kucha tea plants. A few studies have examined the effects of TeaCrine® on cognitive perception, but no research exists examining its effects on resistance exercise performance. The purpose of this study was to determine the efficacy of TeaCrine®, a caffeine-like compound, on maximal muscular strength, endurance, and power performance in resistance-trained men. Methods Twelve resistance-trained men participated in a randomized, double-blind, cross-over designed study. Each participant performed one-repetition maximum (1RM) bench press, 1RM squat, bench press repetitions to failure (RTF) at 70% 1RM, squat RTF at 70% 1RM, and 2-km rowing time trial 90 min after consumption of: (1) Caffeine 300 mg (CAFF300); (2) TeaCrine® 300 mg (TEA300); (3) TeaCrine® + Caffeine (COMBO; 150 mg/150 mg); (4) Placebo 300 mg (PLA). Power and velocity were measured using a TENDO Power Analyzer. Visual analogue scales for energy, focus, motivation to exercise, and fatigue were administered at baseline and 90 min post-treatment ingestion (pre-workout). Rating of perceived exertion was assessed after bench press RTF and squat RTF. Results There were no differences between groups for 1RM, RTF, and power in the bench press and squat exercises. Only CAFF300 resulted in significant increases in perceived energy and motivation to exercise vs. TEA300 and PLA (Energy: + 9.8%, 95% confidence interval [3.3–16.4%], p < 0.01; + 15.3%, 95% CI [2.2–28.5%], p < 0.02; Motivation to exercise: + 8.9%, 95% CI [0.2–17.6%], p = 0.04, + 14.8%, 95% CI [4.7–24.8%], p < 0.01, respectively) and increased focus (+ 9.6%, 95% CI [2.1–17.1%], p = 0.01) vs. TEA300, but there were no significant differences between CAFF300 and COMBO (Energy + 3.9% [− 6.9–14.7%], Focus + 2.5% [− 6.3–11.3%], Motivation to exercise + 0.5% [− 11.6–12.6%]; p > 0.05). Conclusion Neither TEA300, CAFF300, COMBO, or PLA (when consumed 90 min pre-exercise) improved muscular strength, power, or endurance performance in resistance-trained men. Only CAFF300 improved measures of focus, energy, and motivation to exercise.


Sign in / Sign up

Export Citation Format

Share Document