scholarly journals Characteristics and Risk Assessment of Soil Polluted by Lead around Various Metal Mines in China

Author(s):  
Jing Shi ◽  
Ping Du ◽  
Huilong Luo ◽  
Juan Chen ◽  
Yunhui Zhang ◽  
...  

The contamination of soil by lead (Pb) is a serious and widespread problem in China, especially in mining areas. This paper summarized the available data regarding Pb-contaminated soils around various metal mines in China. Based on these data, the Pb concentration in the soil and its temporal and spatial changes were analyzed. Potential ecological hazards and adult lead models were also used to estimate ecological and health risks. The results indicated that the concentration of Pb was closely related with the type of mine. Compared with other types of mine, soil around lead-zinc (Pb-Zn) and tin (Sn) mines with high Pb contents in the metallic ores and high pollutant emission coefficient were more strongly polluted by Pb. The characteristic spatial and temporal variations of Pb pollution status in China were clarified, and the results showed that the concentration was high in the southern, southwestern, and central regions of China where many mining areas were located, and the mean value passed a turning point in 2012. Ecological risk assessments indicated that some areas around mines were at considerable to high risk, and the risk was relatively severe in Pb-Zn mining areas. According to the adult lead model, Pb-Zn mines had a greater impact on blood Pb concentration than the other types of mine.

2015 ◽  
Vol 8 ◽  
pp. ASWR.S22465 ◽  
Author(s):  
Diane Saint-Laurent ◽  
Francis Baril ◽  
Ilias Bazier ◽  
Vernhar Gervais-Beaulac ◽  
Camille Chapados

This research combines a hydrological and pedological approach to better understand the spatial distribution of contaminated soils along the Massawippi River (southern Québec, Canada). This river crosses through former mines, which were some of the largest copper mining areas in North America from 1865 to 1939. To determine the spatial distribution and concentration of the metal elements, soil samples were taken in each flood recurrence zone appearing on official flood zone maps. The maximum values obtained for Cu and Pb are 380 and 200 mg kg−1, respectively, for the soils in the frequent flood zones (FFzs), while the values for soils in the moderate flood zones (MFzs) range from 700 to 540 (Cu) and 580 to 460 mg kg−1 (Pb). Contamination extends through several kilometers of the former mining sites (Eustis and Capleton), and concentration of metals in alluvial soils is slightly higher near the mine sites.


2019 ◽  
Vol 8 (1) ◽  
pp. 82-86
Author(s):  
Anastasia Olegovna Oznobihina

The aim of the study is to conduct biological testing at the initial stages of plant objects viability in the model conditions of heavy metal pollution. The paper presents the results of laboratory experiments to assess the impact of different concentrations of heavy metal salts on the viability of yellow melilot and great trefoil seeds. In the course of the conducted experimental studies the author has been established a direct dependence of the decrease in the indices of germination energy and laboratory germination of seeds with an increase in the concentration of phytotoxicant salts, determined the critical (threshold) concentration of the studied elements and the metal content, in which the processes of growth and development of seeds remain. The concentration of 0,01% cadmium, zinc, lead and copper was optimal for germination of melilot seeds, where germination was equal to 80%, 74%, 69% and 64%, respectively. For great trefoil seeds, high germination rates were noted in case of 0,01% contamination with lead, zinc, cadmium and copper - 82%, 80%, 77% and 76%, respectively, and in 0,1% salt solution of lead, copper and zinc there were recorded 75%, 74% and 72% of seedlings. Zinc in the concentration of 0,01% at the initial stages of germination of phytomeliorant seeds stimulated germination energy. The tendency of resistance to pollution by lead, zinc and copper was observed at sprouts of a great trefoil, and to pollution by cadmium the greatest resistance was shown by a melilot yellow. Defining the limits of the leguminous plant seeds germination in the presence of a toxic agent will allow research and development in respect of biological restoration of contaminated soils and can be used in technologically disturbed lands.


2021 ◽  
Vol 303 ◽  
pp. 01040
Author(s):  
Fan Feng ◽  
Xibing Li ◽  
Shaojie Chen ◽  
Dingxiao Peng ◽  
Zhuang Bian

For mining using the caving and filling methods in metal mines, determining a suitable size for the isolated pillars—the connecting part of the extension from shallow to deep—is crucial for ensuring safety and efficiency. Considering actual cases involving deep caving and cut-and-fill mining in the Chifeng Hongling lead-zinc mine in Inner Mongolia, China, the reserved thickness range of the horizontal isolation layer is obtained via theoretical analysis. On this basis, the pre-processing software HyperMesh is used to build a high-precision hexahedral grid model of the mining area, and the three-dimensional geological model of the mining area is imported into the finite-difference software FLAC3D. The stress field, displacement field, and plastic area evolution law of pillars (horizontally isolated pillars and adjacent rib pillars) in the stope of the ninth middle section after excavation are analyzed via numerical simulation inversion of the selected scheme of horizontal isolated pillars. The numerical simulation results show that the scheme employed to retain the upper horizontal isolated pillars in the ninth middle section involves reserving thicknesses of 8 m and 32 m at average ore body thicknesses of 15 m and 35 m, respectively. These results can provide theoretical guidance and a basis for safe and efficient mining of deep metal mines.


2019 ◽  
Vol 11 (2) ◽  
pp. 137 ◽  
Author(s):  
Yapeng Wang ◽  
Jinhua Tao ◽  
Liangxiao Cheng ◽  
Chao Yu ◽  
Zifeng Wang ◽  
...  

East China is the ‘hotspot’ of glyoxal (CHOCHO), especially over the Pearl River Delta (PRD) region, where glyoxal is yielded from the oxidation of aromatics. To better understand the glyoxal spatial-temporal characteristics over China and evaluate the effectiveness of atmospheric prevention efforts on the reduction of volatile organic compound (VOC) emissions, we present an algorithm for glyoxal retrieval using the Ozone Monitoring instrument (OMI) over China. The algorithm is based on the differential optical absorption spectroscopy (DOAS) and accounts for the interference of the tropospheric nitrogen dioxide (NO2) spatial-temporal distribution on glyoxal retrieval. We conduct a sensitively test based on a synthetic spectrum to optimize the fitting parameters set. It shows that the fitting interval of 430–458 nm and a 4th order polynomial are optimal for glyoxal retrieval when using the daily mean value of the earthshine spectrum in the Pacific region as a reference. In addition, tropospheric NO2 pre-fitted during glyoxal retrieval is first proposed and tested, which shows a ±10% variation compared with the reference scene. The interference of NO2 on glyoxal was further investigated based on the OMI observations, and the spatial distribution showed that changes in the NO2 concentration can affect the glyoxal result depending on the NO2 spatial distribution. A method to prefix NO2 during glyoxal retrieval is proposed in this study and is referred to as OMI-CAS. We perform an intercomparison of the glyoxal from the OMI-CAS with the seasonal datasets provided by different institutions for North China (NC), South China (SC), the Yangtze River Delta (YRD) and the ChuanYu (CY) region in southwestern China in the year 2005. The results show that our algorithm can obtain the glyoxal spatial and temporal variations in different regions over China. OMI-CAS has the best correlations with other datasets in summer, with the correlations between OMI-CAS and OMI-Harvard, OMI-CAS and OMI-IUP, and OMI-CAS and Sciamachy-IUP being 0.63, 0.67 and 0.67, respectively. Autumn results followed, with the correlations of 0.58, 0.36 and 0.48, respectively, over China. However, the correlations are less or even negative for spring and winter. From the regional perspective, SC has the best correlation compared with other regions, with R reaching 0.80 for OMI-CAS and OMI-IUP in summer. The discrepancies between different glyoxal datasets can be attributed to the fitting parameters and larger glyoxal retrieval uncertainties. Finally, useful recommendations are given based on the results comparison according to region and season.


Author(s):  
Michael Benz ◽  
Markus Hehn ◽  
Christopher H. Onder ◽  
Lino Guzzella

This paper proposes a novel optimization method that allows a reduction in the pollutant emission of diesel engines during transient operation. The key idea is to synthesize optimal actuator commands using reliable models of the engine system and powerful numerical optimization methods. The engine model includes a mean-value engine model for the dynamics of the gas paths, including the turbocharger of the fuel injection, and of the torque generation. The pollutant formation is modeled using an extended quasi-static modeling approach. The optimization substantially changes the input signals, such that the engine model is enabled to extrapolate all relevant outputs beyond the regular operating area. A feedforward controller for the injected fuel mass is used to eliminate the nonlinear path constraints during the optimization. The model is validated using experimental data obtained on a transient engine test bench. A direct single shooting method is found to be most effective for the numerical optimization. The results show a significant potential for reducing the pollutant emissions during transient operation of the engine. The optimized input trajectories derived assist the design of sophisticated engine control systems.


2011 ◽  
Vol 414 ◽  
pp. 244-249
Author(s):  
Tao Zhu ◽  
Chang Sheng Jiang ◽  
Qing Ju Hao ◽  
Xiao Juan Huang

The manganese contents of soils and dominant plants from the manganese mining areas in Xiushan autonomous county of Chongqing were researched in this paper. The results showed that the Mn pollution of soil in the Mn mining tailings were very serious with high indexes (Igeo>5), and sewage irrigated soil was also contaminated by manganese metal. The uptake of Mn by dominant plants can be classified into three types according to the Mn contents in plant shoots and roots, (1) the accumulator which absorbs a large content of Mn by the roots and transports it to the shoots, (2) the root compartment which also absorbs a large content of Mn but mainly in the roots, and (3) the excluder which absorbs a smaller content of Mn than the accumulator. The edible parts of radishes and peppers growing in the Mn mining tailings and cropland were all seriously polluted by manganese and not safe for human health.


2021 ◽  
Vol 25 (7) ◽  
pp. 1221-1229
Author(s):  
M.P. Wanjala ◽  
L. Odokuma ◽  
I. Etela ◽  
R. Ramkat ◽  
B.A. Odogwu ◽  
...  

Intensified urbanization and industrialization are rapidly triggering the release of pollutants to the environment. This study determined the extent of soil contamination with Nickel (Ni) in oil mining areas and its effect on the levels of Ni tolerance by fungi and bacteria. The total CFUs/g of soil were enumerated after a culture period of 7 days at 28°C and LC50 was determined using probit and regression analysis. The mean values of Ni were 1.38±0.23 in industrial area, 1.41±0.36 ppm in agricultural area and 1.02±0.64 in urban area. The mean values of Total Petroleum Hydrocarbon (TPH) were 4,405.46 ppm in industrial area, 55.65 ppm in agricultural area and 1,304.53 ppm in urban area. Nickel’s peak concentration indicating growth of both fungi and bacteria at 150 ppm. There was significant difference (p ≤ 0.000) in the mean levels of LC50 for fungi among the study sites. There was no significant correlation between the concentration of TPH in soil and LC50 of fungi (r = -0.169) and bacteria (r = 0.042). In conclusion, TPH influenced the levels of fungi and bacteria tolerance to Ni in soils. Moreover, it was observed that LC50 can be a reliable method for monitoring chemically resistant microorganisms directly in the environment to improve the use of microorganisms for the bioremediation of oil contaminated soils and in monitoring of antibiotic resistant microorganisms in natural ecosystems.


2021 ◽  
Vol 261 ◽  
pp. 04015
Author(s):  
Fengli Mou ◽  
Jingmin Yang ◽  
Biwen Li ◽  
Jianjun Chen ◽  
Jixiu Wang

In order to screen out the plants used to repair heavy metal pollution in the soil, five plants and surface soil were collected in the Huize lead-zinc mine area, centered on the hyperaccumulator plant Arabis alpina L. var. parviflora Franch, measured the heavy metal content of in shoot and root of plant and surface soil, and analyzed the characteristics of heavy metal accumulation in plants. The results showed that the soil Cd pollution in the Huize lead-zinc mining area was the most serious; among the five plants, the Cd bioconcentration factor(BCF) and translocation factor(TF) of A. alpina were more than 1, and the TF of Pb was more than 1; the TF of Anaphalis margaritacea, Cyananthus inflatus and Arenaria orbiculata to Cu and Zn were more than 1, the TF of Juncus effusus to Cd and Zn were more than 1. These five plants had good tolerance to heavy metals and were of great significance to the remediation and restoration of heavy metal contaminated soil in lead-zinc mining areas.


Author(s):  
Michael Lambert ◽  
Gary Pierzynski ◽  
Larry Erickson ◽  
Jerry Schnoor
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document