scholarly journals Habitability, Resilience, and Satisfaction in Mexican Homes to COVID-19 Pandemic

Author(s):  
Maribel Jaimes Torres ◽  
Mónica Aguilera Portillo ◽  
Teresa Cuerdo-Vilches ◽  
Ignacio Oteiza ◽  
Miguel Ángel Navas-Martín

Following the 2020 confinement due to the COVID-19 pandemic, housing has become the only safe place and this has exposed inequity in habitability. This research on the reality of confined households and the perception of their homes in the Mexican republic is based on a mixed participatory study, combining quantitative and qualitative approaches. The online questionnaire consisted of 58 questions in the quantitative approximation. The qualitative part required the provision of an image of the workspace, with testimonies and personal reflections. During the lockdown, all participants saw an increase in overall energy consumption; more than half reported not being in thermal comfort; and a third declared deficiencies in noise insulation. Regarding the perception of the telework/tele-study space, we found the following categories: bedrooms, living/dining rooms, studies and others. In addition, respondents had often adapted the workspace for both individual and shared use. In general, the households were satisfied with the size of their houses but would like landscaped spaces or better views outside. Confinement made housing the protective element against the pandemic. The consequences will have an effect globally, so new architectural design paradigms need to be rethought.

2012 ◽  
Vol 512-515 ◽  
pp. 2758-2761 ◽  
Author(s):  
Jian Ping Chen ◽  
Hai Rong Dong

There are many types of external decorative materials of buildings, which have different properties in absorbing, reflecting and re-radiating the solar radiation because of their different color, texture and degree of roughness. Different external decorative materials for the buildings with same direction, the amount of solar radiation will be different. The correction of heat- transferring coefficient of envelope is related not only to the direction, but also to the selected external decorative materials of buildings. In this paper, the method is to establish thermal gain or loss model of architectural envelope, to analysis the influence of solar radiation of different external decorative materials on heat consumption of buildings. Aim to provide the reference for the selection of external decorative materials in architectural design, and to improve indoor thermal comfort and reduce architectural energy consumption.


2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 232
Author(s):  
Juan Manuel Medina ◽  
Carolina M. Rodriguez ◽  
Maria Camila Coronado ◽  
Lina Maria Garcia

The analysis of thermal comfort in buildings, energy consumption, and occupant satisfaction is crucial to influencing the architectural design methodologies of the future. However, research in these fields in developing countries is sectorised. Most times, the standards to study and assess thermal comfort such as ASHRAE Standard 55, EN 15251, and ISO 7730 are insufficient and not appropriate for the geographical areas of application. This article presents a scoping review of published work in Colombia, as a representative case study, to highlight the state-of-the-art, research trends, gaps, and potential areas for further development. It examines the amount, origin, extent, and content of research and peer-reviewed documentation over the last decades. The findings allow new insights regarding the preferred models and the evaluation tools that have been used to date and that are recommended to use in the future. It also includes additional information regarding the most and least studied regions, cities, and climates in the country. This work could be of interest for the academic community and policymakers in the areas related to indoor and urban climate management and energy efficiency.


2014 ◽  
Vol 493 ◽  
pp. 74-79
Author(s):  
Y.A. Sabtalistia ◽  
S.N.N. Ekasiwi ◽  
B. Iskandriawan

Energy consumption for air conditioning systems (air conditioning system) increased along with the increasing need for fresh air and comfortable in the room especially apartments. FAC system (Floor Air Conditioning) is growing because it is more energy efficient than CAC (Ceiling Air Conditioning) system. However, the position of the AC supply is on the lower level at the FAC system causes draft discomfort becomes greater as air supply closer to the occupants so that thermal comfort can be reduced. Heat mixture of windows, exterior walls, kitchen, and occupants in the studio apartment affect thermal comfort in the room too.This study aims to determine the position of the AC supply which has the best thermal comfort of FAC system in the studio apartment. It can be done by analyzing ADPI (Air Diffusion Performance Index), the distribution of air temperature, wind speed, RH (Relative Humidity), and DR (Draft Risk) to change the position of the AC supply supported by CFD (Computational Fluid Dynamics) simulation.This result prove that AC position 2 (on wall near the kitchen) is more comfortable than AC position 1 (on the bathroom wall) because AC position 2 away from occupied areas, thereby reducing the occurrence of draught discomfort.


2020 ◽  
pp. 014459872096921
Author(s):  
Yanru Li ◽  
Enshen Long ◽  
Lili Zhang ◽  
Xiangyu Dong ◽  
Suo Wang

In the Yangtze River zone of China, the heating operation in buildings is mainly part-time and part-space, which could affect the indoor thermal comfort while making the thermal process of building envelope different. This paper proposed to integrate phase change material (PCM) to building walls to increase the indoor thermal comfort and attenuate the temperature fluctuations during intermittent heating. The aim of this study is to investigate the influence of this kind of composite phase change wall (composite-PCW) on the indoor thermal environment and energy consumption of intermittent heating, and further develop an optimization strategy of intermittent heating operation by using EnergyPlus simulation. Results show that the indoor air temperature of the building with the composite-PCW was 2–3°C higher than the building with the reference wall (normal foamed concrete wall) during the heating-off process. Moreover, the indoor air temperature was higher than 18°C and the mean radiation temperature was above 20°C in the first 1 h after stopping heating. Under the optimized operation condition of turning off the heating device 1 h in advance, the heat release process of the composite-PCW to the indoor environment could maintain the indoor thermal environment within the comfortable range effectively. The composite-PCW could decrease 4.74% of the yearly heating energy consumption compared with the reference wall. The optimization described can provide useful information and guidance for the energy saving of intermittently heated buildings.


Author(s):  
Danial Mohammadi ◽  
Simin Nasrabadi

Background: One way to achieve a standard heating, ventilating, and air conditioning system with maximum satisfaction is to use a thermal index to identify and determine the thermal comfort of people. In this study we intend to evaluate thermal comfort based on PMV-PPD (Predicted Mean Vote/Predicted Percentage Dissatisfied) model in workers of screening center for COVID-19. Methods: The study period was from March 1 to October 31, 2020. In this study, we used the ISO 7730 model to determinate PMV-PPD index. PMV index was used to determine thermal comfort at different scales in Birjand city with arid and hot climate. All data were analyzed using R software (version 3.3.0) and IBM SPSS statistics softwares. Results: The maximum and minimum recorded physical PMV values in the study period were observed in June as (2.09 ± 0.03) and March as (-1.27 ± 0.14), respectively. The amplitude of the thermal sense in the study period was varied between slightly cool (-1.5) and warm (+2.5). The PPD in spring was 40% which indicated slightly warm to hot condition. Conclusions: The October was the only month during the study in which thermal stress was in comfort or neutral thermal condition.  Our results suggest that thermal comfort has dimensions and indices which are helpful in managing energy consumption.


2016 ◽  
Vol 1 (15) ◽  
Author(s):  
Ivan Hegediš ◽  
Neđo Đurić ◽  
Arpad Čeh ◽  
Golub Karaman ◽  
Danilo Vunjak ◽  
...  

Building with earth is widespread and still mostly based on traditional experiences. Increasing demandsin energy consumption reduction during the construction and exploitation of buildings put more andmore in the focus the good features of houses built with earth.Testing of earth mixtures with othernatural materials showed that it can get even a quality of bricks, which indicates the lack of appropriatestandards for this type of construction.Testing are performed with mixes of earth and straw intended forrammed earth and adobe construction.This method of preparation and construction applies in alternate construction with straw bales and it isalso used in the construction of prefabricated panels with wooden frame filled with a mixture earth andstraw where it is possible to build prefabricated structures or as a filling of wall screens in skeletalstructural system of larger dimensions and number of floors.Laboratory tests have shown that the mechanical and thermal properties of this material fulfilled thehigh demands for the construction of modern buildings. Based on the presented results it can proceedthe development and testing of structural elements for that kind of building.Also, based on results, in the article the authors presented possibilities of architectural design ofvarious building possibilities of objects, as practical examples of prefabrication applied in somecountries.


Sign in / Sign up

Export Citation Format

Share Document