scholarly journals Chemical, Biological and Morphological Properties of Fine Particles during Local Rice Straw Burning Activities

Author(s):  
Nur Amanina Ramli ◽  
Noor Faizah Fitri Md Yusof ◽  
Kamarul Zaman Zarkasi ◽  
Azrin Suroto

Rice straw is commonly burned openly after harvesting in Malaysia and many other Asian countries where rice is the main crop. This operation emits a significant amount of air pollution, which can have severe consequences for indoor air quality, public health, and climate change. Therefore, this study focuses on determining the compositions of trace elements and the morphological properties of fine particles. Furthermore, the species of bacteria found in bioaerosol from rice burning activities were discovered in this study. For morphological observation of fine particles, FESEM-EDX was used in this study. Two main categories of particles were found, which were natural particles and anthropogenic particles. The zinc element was found during the morphological observation and was assumed to come from the fertilizer used by the farmers. ICP-OES identifies the concentration of trace elements in the fine particle samples. A cultured method was used in this study by using nutrient agar. From this study, several bacteria were identified: Exiguobavterium indicum, Bacillus amyloliquefaciens, Desulfonema limicola str. Jadabusan, Exiguobacterium acetylicum, Lysinibacillus macrolides, and Bacillus proteolyticus. This study is important, especially for human health, and further research on the biological composition of aerosols should be conducted to understand the effect of microorganisms on human health.

Author(s):  
Kamthorn Thambhitaks ◽  
Jirawan Kitchaicharoen

This study aims to assess the external costs of environmental impacts associated with the rice production systems using LCA approach and evaluated them into the economic value. The study compared the different chemical and energy use, as well as straw management of the three different rice production systems, included the mainstream conventional rice system, GAP rice system, and the organic rice system in Northern Thailand. The LCA analysis quantified the midpoint and endpoint of five environmental impacts, including climate change, terrestrial acidification, eutrophication, water depletion, and human health damage, from cradle-to-farm gate. The results of economic valuation revealed that the external costs of the conventional and GAP rice systems have significantly higher than that of the organic system. Most external costs came from the wastewater treatment cost due to the eutrophication mainly arising from the use of chemical fertilizer. Besides, about one-fourth of the total external costs came from the human health damage cost due to the open-air rice straw burning. To reduce the external costs of rice production, the amount of chemical fertilizer use causing eutrophication should be diminished and replaced by applying organic fertilizer from incorporating rice straw into the soil as well as growing a rotational crop after rice cultivation to stop the open-air rice straw burning and reduced the human health damage. The government should encourage rice farmers to the organic rice farming and manage the rice straw without burning because they may have the cost burden, whereas society gains more benefits from less pollution. Keywords: Economic valuation, Environmental impacts, Life Cycle Assessment, Rice production systems, Thai Good Agricultural Practice


2020 ◽  
Author(s):  
Harshad Vijay Kulkarni ◽  
◽  
Michael Vega ◽  
Karen Johannesson ◽  
Robert Taylor ◽  
...  

2021 ◽  
Vol 10 (13) ◽  
pp. 2903
Author(s):  
Jiezhong Chen ◽  
Luis Vitetta

The gut microbiota is well known to exert multiple benefits on human health including protection from disease causing pathobiont microbes. It has been recognized that healthy intestinal microbiota is of great importance in the pathogenesis of COVID-19. Gut dysbiosis caused by various reasons is associated with severe COVID-19. Therefore, the modulation of gut microbiota and supplementation of commensal bacterial metabolites could reduce the severity of COVID-19. Many approaches have been studied to improve gut microbiota in COVID-19 including probiotics, bacterial metabolites, and prebiotics, as well as nutraceuticals and trace elements. So far, 19 clinical trials for testing the efficacy of probiotics and synbiotics in COVID-19 prevention and treatment are ongoing. In this narrative review, we summarize the effects of various approaches on the prevention and treatment of COVID-19 and discuss associated mechanisms.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


2021 ◽  
Vol 97 ◽  
pp. 103754
Author(s):  
Naghmeh Soltani ◽  
Michel Marengo ◽  
Behnam Keshavarzi ◽  
Farid Moore ◽  
Peter S. Hooda ◽  
...  

2005 ◽  
Vol 26 (4-5) ◽  
pp. 233-234 ◽  
Author(s):  
Cesar G. Fraga ◽  
Patricia I. Oteiza ◽  
Carl L. Keen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document