scholarly journals An Evaluation of Street Dynamic Vitality and Its Influential Factors Based on Multi-Source Big Data

2021 ◽  
Vol 10 (3) ◽  
pp. 143
Author(s):  
Xin Guo ◽  
Hongfei Chen ◽  
Xiping Yang

Urban vitality is an important indicator of urban development capacity. Streets’ metrics can depict intro-urban fabrics and physiognomy in detail, and thus street vitality affected by street metrics is a concrete manifestation of urban vitality. However, few studies have evaluated dynamic vitality or explored how it is influenced by land use. To bridge this gap, we fully evaluated street dynamic vitality and explored how to enhance the street dynamic vitality by changing the distribution and combination of land use. Specifically, we examined the street dynamic vitality and land use diversity in the main urban zone of Xining city in China using mobile communication and point of interest data, adopted optimized K-means clustering to identify street dynamic vitality types, evaluated the classification result based on vitality intensity and vitality stability, and explored the link between land use and dynamic vitality. Since vitality intensity limitations were found in describing street dynamic vitality, it was necessary to introduce vitality stability. We also found a positive correlation between the vitality intensity and land use density, there were outstanding traffic facilities in high-intensity vitality streets, and improving the abundance and uniformity of land use was beneficial to increase vitality stability. Overall, describing street vitality from a dynamic perspective can improve resource utilization efficiency and rationally plan layouts.

2021 ◽  
Vol 20 (2) ◽  
pp. 349-362 ◽  
Author(s):  
Liang-bing RONG ◽  
Kai-yuan GONG ◽  
Feng-ying DUAN ◽  
Shao-kun LI ◽  
Ming ZHAO ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 107
Author(s):  
Ge Song ◽  
Hongmei Zhang

Cultivated land use layout adjustment (CLULA) based on crop planting suitability is the refinement and deepening of land use transformation, which is of great significance for optimizing the allocation of cultivated land resources and ensuring food security. At present, people rarely consider the land suitability of crops when using cultivated land, resulting in an imbalance between crop distribution and resource conditions such as water, heat, and soil, and adversely affects the ecological security and utilization efficiency of cultivated land. To alleviate China’s grain planting structural imbalance and efficiency loss, this paper based on the planting suitability of main food crops (rice, soybean, and maize) to adjust and optimize the cultivated land use layout (CLUL) in the typical counties of the main grain production area in Northeast China, using the agent-based model for optimal land allocation (AgentLA) and GIS technology. Findings from the study show that: (1) The planting suitability of rice, soybean, and maize in the region is obviously different. Among them, the suitability level of soybean and maize is high, and that of rice is low. The current CLUL of the food crops needs to be further optimized and adjusted. (2) By optimizing the layout of rice, soybean, and maize, the planting suitability level of the food crops and the concentration level of the CLUL spatial pattern have been improved. (3) The plan for CLULA is formulated: The study area is divided into rice stable production area, maize-soybean rotation area, maize dominant area, and soybean dominant area, and town or village is identified as the implementation unit of CLULA. The plan for CLULA will be conducive to the concentrated farming of food crops according to the suitable natural conditions and management level. The research realized the optimization of spatial structure and cultivated land use patterns of different food crops integrating farming with protecting land. The significance of the study is that it provides a scientific basis and guidance for adjusting the regional planting structure and solving the problem of food structural imbalance.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 657
Author(s):  
Aiping Wang ◽  
Weifen Lin ◽  
Bei Liu ◽  
Hui Wang ◽  
Hong Xu

Frontier research primarily focuses on the effect of urban development models on land use efficiency, while ignoring the effect of new-type urban development on the green land use efficiency. Accordingly, this paper employs a super efficiency slacks-based measure (super-SBM) model with undesirable outputs to measure the green land use efficiency based on panel data from 152 prefecture-level cities for the period 2004–2017. We construct a difference-in-differences (DID) model in this paper to test the impact of smart city construction on the green utilization efficiency of urban land and its transmission mechanism. The results showed that: (1) The smart city construction significantly improved the green utilization efficiency of urban land, increasing the general efficiency by 15%. (2) There is significant city-size heterogeneity in the effect of smart city construction on improving green utilization efficiency of urban land. The policy effect is more obvious in mega cities and above than in very-large-sized cities. (3) The city-feature heterogeneity results reveal that, in cities with a higher level of human capital, financial development, and information infrastructure, the effectiveness of smart city construction in improving the green utilization efficiency of urban land are more obvious, and in cities with a higher level of financial development, the effects of the urban policy were more optimal. (4) The smart city construction promotes the green utilization efficiency of urban land through by the information industry development and the regional innovation capabilities.


2012 ◽  
Vol 7 (No. 1) ◽  
pp. 10-17 ◽  
Author(s):  
S. Wijitkosum

Soil erosion has been considered as the primary cause of soil degradation since soil erosion leads to the loss of topsoil and soil organic matters which are essential for the growing of plants. Land use, which relates to land cover, is one of the influential factors that affect soil erosion. In this study, impacts of land use changes on soil erosion in Pa Deng sub-district, adjacent area of Kaeng Krachan National Park, Thailand, were investigated by applying remote sensing technique, geographical information system (GIS) and the Universal Soil Loss Equation (USLE). The study results revealed that land use changes in terms of area size and pattern influenced the soil erosion risk in Pa Deng in the 1990–2010 period. The area with smaller land cover obviously showed the high risk of soil erosion than the larger land cover did.


2019 ◽  
Vol 11 (22) ◽  
pp. 6203 ◽  
Author(s):  
Shuhan Liu ◽  
Dongyan Wang ◽  
Guoping Lei ◽  
Hong Li ◽  
Wenbo Li

Ecological land with considerable ecological value can be regarded as an important indicator in guaranteeing ecosystem function and sustainable development. Generally, the urbanization process has been considered to be the primary factor affecting ecological land use. However, the influence of agricultural development, particularly in a typical farming area, has rarely been studied. In this paper, we present a method to assess the ecological risk of ecological land (ELER) in a black soil area in northeastern China. Furthermore, the underlying factors were detected using the geographically weighted regression model, which took into account conditions of natural elements, the urbanization process, and grain production conditions. The results indicate that ecological land experienced remarkable changes with an evident loss and decline from 1996–2015. The ELER progressively increased in the concentrated farming area and the western agro-pastoral ecotone, and the ecological land in the eastern forest area was always at a high risk level. According to the regression coefficients, the relationships between influence factors and ELER could be better explained by the variables of elevation, slope, proportion of rural residential area, and ratio of cultivated land area to residential area. To summarize, agricultural occupation and urban expansion were verified as the two main causes of ecological land loss, as well as elevated risks. In light of the current situation, measures such as policy adjustment and ecological restoration should be taken to avoid risk and optimize land use.


Agrologia ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Silwanus M Talakua ◽  
Rafael M Osok

Land use is the most influential factor in soil degradation due to erosion. The objectives of this research are to know the level of land degradation and the factors that influence the land use area, the upper vegetation density and the lower vegetation density. This research uses the method of measuring ground damage indicator in the field. The results showed that single, wide land use, upper vegetation density and lower vegetation density had an effect on soil degradation on mixed garden land use; while simultaneously, wide land use, upper vegetation density and lower vegetation density have an effect on soil degradation on mixed garden land use. The most influential factors for soil degradation in mixed gardens are the area of land use and lower vegetation density.Keyword:  Degradation of soil, land, vegetation density, mixed gardens.


Land ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 49 ◽  
Author(s):  
Saowanee Wijitkosum

The process of desertification is complex, involving interaction between many factors, both environmental and anthropogenic. However, human activities, especially from land-use change and inappropriate land use, are the most influential factors associated with the desertification risk. This study was conducted in Huay Sai, a degraded land in Thailand. The Environmentally Sensitive Area Index (ESAI) model incorporating Geogracphic Information System (GIS) was applied to investigate and map the desertification sensitivity area. The study aimed to analyze and assess measures to reduce the desertification risk. This study emphasized three group factors with nine subcriteria influencing desertification risk: soil (texture, fertility, drainage, slope gradient, and depth), climatic (precipitation and aridity index), and vegetation factors (land use and soil erosion). In terms of the required spatial measures to reduce the desertification vulnerability, policy and defensive measures that were closely related to drought and desertification of the area were considered. Three main measures covering soil and water conservation, soil improvement, and reforestation were implemented. The area development and restoration plans have been implemented continuously. The study found that 47.29% of the Huay Sai area was at a high risk, with a further 41.16% at a moderate risk. Implementation of three measures indicated that desertification risk was significantly decreased. Addressing the causes of the highest risk areas could help reduce the overall desertification risk at Huay Sai, where most areas would then be at either a moderate (61.04%) or low (32.43%) desertification risk with no severe- or high-risk areas. The success of the area restoration is from the formulation of a restoration and development plan that understands the local conditions. Moreover, the plan integrated the restoration of the soil, forests, and water together in order to restore the ecosystem so that the implementation was able to solve problems directly.


Sign in / Sign up

Export Citation Format

Share Document