scholarly journals CATCHA: Real-Time Camera Tracking Method for Augmented Reality Applications in Cultural Heritage Interiors

2018 ◽  
Vol 7 (12) ◽  
pp. 479 ◽  
Author(s):  
Piotr Siekański ◽  
Jakub Michoński ◽  
Eryk Bunsch ◽  
Robert Sitnik

Camera pose tracking is a fundamental task in Augmented Reality (AR) applications. In this paper, we present CATCHA, a method to achieve camera pose tracking in cultural heritage interiors with rigorous conservatory policies. Our solution is real-time model-based camera tracking according to textured point cloud, regardless of its registration technique. We achieve this solution using orthographic model rendering that allows us to achieve real-time performance, regardless of point cloud density. Our developed algorithm is used to create a novel tool to help both cultural heritage restorers and individual visitors visually compare the actual state of a culture heritage location with its previously scanned state from the same point of view in real time. The provided application can directly achieve a frame rate of over 15 Hz on VGA frames on a mobile device and over 40 Hz using remote processing. The performance of our approach is evaluated using a model of the King’s Chinese Cabinet (Museum of King Jan III’s Palace at Wilanów, Warsaw, Poland) that was scanned in 2009 using the structured light technique and renovated and scanned again in 2015. Additional tests are performed on a model of the Al Fresco Cabinet in the same museum, scanned using a time-of-flight laser scanner.

2020 ◽  
Vol 13 (6) ◽  
pp. 512-521
Author(s):  
Mohamed Taha ◽  
◽  
Mohamed Ibrahim ◽  
Hala Zayed ◽  
◽  
...  

Vein detection is an important issue for the medical field. There are some commercial devices for detecting veins using infrared radiation. However, most of these commercial solutions are cost-prohibitive. Recently, veins detection has attracted much attention from research teams. The main focus is on developing real-time systems with low-cost hardware. Systems developed to reduce costs suffer from low frame rates. This, in turn, makes these systems not suitable for real-world applications. On the other hand, systems that use powerful processors to produce high frame rates suffer from high costs and a lack of mobility. In this paper, a real-time vein mapping prototype using augmented reality is proposed. The proposed prototype provides a compromised solution to produce high frame rates with a low-cost system. It consists of a USB camera attached to an Android smartphone used for real-time detection. Infrared radiation is employed to differentiate the veins using 20 Infrared Light Emitting Diodes (LEDs). The captured frames are processed to enhance vein detection using light computational algorithms to improve real-time processing and increase frame rate. Finally, the enhanced view of veins appears on the smartphone screen. Portability and economic cost are taken into consideration while developing the proposed prototype. The proposed prototype is tested with people of different ages and gender, as well as using mobile devices of different specifications. The results show a high vein detection rate and a high frame rate compared to other existing systems.


Author(s):  
Daniel Asmar

This paper briefly surveys pose tracking methods used for augmented reality applications in cultural heritage. The paper primarily benefits scholars and practitioners in the areas of electronic heritage. Pose tracking techniques are categorized as either being dependent or independent of their surrounding; accordingly, various solution methods in the literature are presented along with their advantages and disadvantages. I conclude the paper with a discussion on the open problems in pose tracking in cultural heritage and recommend future directions of research in this field.


Author(s):  
D. Graziosi ◽  
O. Nakagami ◽  
S. Kuma ◽  
A. Zaghetto ◽  
T. Suzuki ◽  
...  

Abstract This article presents an overview of the recent standardization activities for point cloud compression (PCC). A point cloud is a 3D data representation used in diverse applications associated with immersive media including virtual/augmented reality, immersive telepresence, autonomous driving and cultural heritage archival. The international standard body for media compression, also known as the Motion Picture Experts Group (MPEG), is planning to release in 2020 two PCC standard specifications: video-based PCC (V-CC) and geometry-based PCC (G-PCC). V-PCC and G-PCC will be part of the ISO/IEC 23090 series on the coded representation of immersive media content. In this paper, we provide a detailed description of both codec algorithms and their coding performances. Moreover, we will also discuss certain unique aspects of point cloud compression.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3725 ◽  
Author(s):  
Naai-Jung Shih ◽  
Pei-Huang Diao ◽  
Yi Chen

Interactions between cultural heritage, tourism, and pedagogy deserve investigation in an as-built environment under a macro- or micro-perspective of urban fabric. The heritage site of Shih Yih Hall, Lukang, was explored. An Augmented Reality Tourism System (ARTS) was developed on a smartphone-based platform for a novel application scenario using 3D scans converted from a point cloud to a portable interaction size. ARTS comprises a real-time environment viewing module, a space-switching module, and an Augmented Reality (AR) guide graphic module. The system facilitates scenario initiations, projection and superimposition, annotation, and interface customization, with software tools developed using ARKit® on the iPhone XS Max®. The three-way interaction between urban fabric, cultural heritage tourism, and pedagogy was made possible through background block-outs and an additive or selective display. The illustration of the full-scale experience of the smartphone app was made feasible for co-relating the cultural dependence of urban fabric on tourism. The great fidelity of 3D scans and AR scenes act as a pedagogical aid for students or tourists. A Post-Study System Usability Questionnaire (PSSUQ) evaluation verified the usefulness of ARTS.


2017 ◽  
Vol 77 (6) ◽  
pp. 6607-6628 ◽  
Author(s):  
Xin Yang ◽  
Jiabin Guo ◽  
Tangli Xue ◽  
Kwang-Ting Cheng

2011 ◽  
Vol 16 (4) ◽  
pp. 614-623
Author(s):  
Ju-Hyun Oh ◽  
Kwang-Hoon Sohn

2019 ◽  
Vol 9 (16) ◽  
pp. 3264 ◽  
Author(s):  
Xujie Kang ◽  
Jing Li ◽  
Xiangtao Fan ◽  
Wenhui Wan

In recent years, low-cost and lightweight RGB and depth (RGB-D) sensors, such as Microsoft Kinect, have made available rich image and depth data, making them very popular in the field of simultaneous localization and mapping (SLAM), which has been increasingly used in robotics, self-driving vehicles, and augmented reality. The RGB-D SLAM constructs 3D environmental models of natural landscapes while simultaneously estimating camera poses. However, in highly variable illumination and motion blur environments, long-distance tracking can result in large cumulative errors and scale shifts. To address this problem in actual applications, in this study, we propose a novel multithreaded RGB-D SLAM framework that incorporates a highly accurate prior terrestrial Light Detection and Ranging (LiDAR) point cloud, which can mitigate cumulative errors and improve the system’s robustness in large-scale and challenging scenarios. First, we employed deep learning to achieve system automatic initialization and motion recovery when tracking is lost. Next, we used terrestrial LiDAR point cloud to obtain prior data of the landscape, and then we applied the point-to-surface inductively coupled plasma (ICP) iterative algorithm to realize accurate camera pose control from the previously obtained LiDAR point cloud data, and finally expanded its control range in the local map construction. Furthermore, an innovative double window segment-based map optimization method is proposed to ensure consistency, better real-time performance, and high accuracy of map construction. The proposed method was tested for long-distance tracking and closed-loop in two different large indoor scenarios. The experimental results indicated that the standard deviation of the 3D map construction is 10 cm in a mapping distance of 100 m, compared with the LiDAR ground truth. Further, the relative cumulative error of the camera in closed-loop experiments is 0.09%, which is twice less than that of the typical SLAM algorithm (3.4%). Therefore, the proposed method was demonstrated to be more robust than the ORB-SLAM2 algorithm in complex indoor environments.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 836 ◽  
Author(s):  
Young-Hoon Jin ◽  
In-Tae Hwang ◽  
Won-Hyung Lee

Augmented reality (AR) is a useful visualization technology that displays information by adding virtual images to the real world. In AR systems that require three-dimensional information, point cloud data is easy to use after real-time acquisition, however, it is difficult to measure and visualize real-time objects due to the large amount of data and a matching process. In this paper we explored a method of estimating pipes from point cloud data and visualizing them in real-time through augmented reality devices. In general, pipe estimation in a point cloud uses a Hough transform and is performed through a preprocessing process, such as noise filtering, normal estimation, or segmentation. However, there is a disadvantage in that the execution time is slow due to a large amount of computation. Therefore, for the real-time visualization in augmented reality devices, the fast cylinder matching method using random sample consensus (RANSAC) is required. In this paper, we proposed parallel processing, multiple frames, adjustable scale, and error correction for real-time visualization. The real-time visualization method through the augmented reality device obtained a depth image from the sensor and configured a uniform point cloud using a voxel grid algorithm. The constructed data was analyzed according to the fast cylinder matching method using RANSAC. The real-time visualization method through augmented reality devices is expected to be used to identify problems, such as the sagging of pipes, through real-time measurements at plant sites due to the spread of various AR devices.


Sign in / Sign up

Export Citation Format

Share Document