scholarly journals Human CD3+ T-Cells with the Anti-ERBB2 Chimeric Antigen Receptor Exhibit Efficient Targeting and Induce Apoptosis in ERBB2 Overexpressing Breast Cancer Cells

2017 ◽  
Vol 18 (9) ◽  
pp. 1797 ◽  
Author(s):  
Rusheni Munisvaradass ◽  
Suresh Kumar ◽  
Chandramohan Govindasamy ◽  
Khalid Alnumair ◽  
Pooi Mok
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2151-2151
Author(s):  
Bipulendu Jena ◽  
Natalya Belousova ◽  
George T McNamara ◽  
David Rushworth ◽  
Tiejuan Mi ◽  
...  

Abstract Human epidermal growth factor receptor (EGFR) family consists of four members i.e. EGFR (HER1), HER2 (ErbB2), HER3 (ErbB3,) and HER4 (ErbB4). Overexpression, mutation, or catalytic activation of these proteins can lead to malignancies in breast, ovarian, colorectal, pancreatic and lung. Therapies targeting EGFR-associated proteins to disrupt signaling may fail because of crosstalk within the EGFR family or among downstream pathways. One mechanism of escape is HER3 activation and concomitant heterodimer formation with HER1 causing disease relapse and treatment failure. A bi-specific monoclonal antibody (mAb, MEHD7945A) can specifically bind an epitope shared between HER1-HER3 heterodimer thereby blocking EGFR-HER3 mediated signaling (Schaefer et al., Cancer Cell, 2011). We now report that the specificity of this mAb can be used to redirect the specificity of T cells through enforced expression of a chimeric antigen receptor (CAR) targeting the HER1-HER3 heterodimer, such as expressed on breast cancer cells. A 2nd generation CAR targeting the HER1-HER3 heterodimer was expressed from DNA plasmid constituting scFv (designated DL11f, derived from mAb MEHD7945A) coupled to CD3-zeta fused in frame with chimeric CD28 or CD137 T-cell signaling domains on a clinical-grade Sleeping Beauty (SB) backbone. T cells were electroporated with SB system and numerically expanded on irradiated “universal” activating and propagating cells (uAaPC) (Rushworth et al., J Immunotherapy, 2014). These feeder cells are derived from K-562 cells engineered to co-express a CAR activating ligand (CAR-L, a scFV specific to CAR stalk) to sustain proliferation of genetically modified T cells. We validated CAR expression on genetically modified T cells by flow cytometry and western blot. The specificity of HER1-HER3 specific CAR T cells was confirmed in situ by a proximity ligation-based assay using breast cancer cells. The redirected killing by CAR+ T cells to HER1+HER3+ breast cancer cells was confirmed in vitro and its efficacy evaluated in vivo in NSG mice bearing a breast tumor xenograft. HER1-HER3 specific CAR+ T cells activated via CD137 signaling exhibited superior proliferation compared with T cells expressing CAR with CD28 signaling domain. This is consistent with the ability of CD3-zeta/CD137 endodmain to alter mitochondrial metabolism and to suppress apoptosis leading to proliferation after initial activation. In summary, we report a new CAR design that can interrogate the conformation between two tumor-associated antigens (TAAs). This will likely improve specificity and limit on-target off-tissue side effects compared to CARs targeting only HER-1 or HER-3. Thus, targeting an epitope derived from two TAAs may help distinguish normal cells versus malignant cells and treat HER1+HER3+ malignancies that are resistant to therapies targeting single EGFR family members. These data have immediate translation appeal for targeting solid tumors as we use the SB and AaPC platforms to manufacture CAR+ T cells in our clinical trials. Disclosures Cooper: InCellerate: Equity Ownership; Sangamo: Patents & Royalties; Targazyme: Consultancy; GE Healthcare: Consultancy; Ferring Pharmaceuticals: Consultancy; Fate Therapeutics: Consultancy; Janssen Pharma: Consultancy; BMS: Consultancy; Miltenyi: Honoraria.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A799-A799
Author(s):  
Dhiraj Kumar ◽  
Sreeharsha Gurrapu ◽  
Hyunho Han ◽  
Yan Wang ◽  
Seongyeon Bae ◽  
...  

BackgroundLong non-coding RNAs (lncRNAs) are involved in various biological processes and diseases. Malat1 (metastasis-associated lung adenocarcinoma transcript 1), also known as Neat2, is one of the most abundant and highly conserved nuclear lncRNAs. Several studies have shown that the expression of lncRNA Malat1 is associated with metastasis and serving as a predictive marker for various tumor progression. Metastatic relapse often develops years after primary tumor removal as a result of disseminated tumor cells undergoing a period of latency in the target organ.1–4 However, the correlation of tumor intrinsic lncRNA in regulation of tumor dormancy and immune evasion is largely unknown.MethodsUsing an in vivo screening platform for the isolation of genetic entities involved in either dormancy or reactivation of breast cancer tumor cells, we have identified Malat1 as a positive mediator of metastatic reactivation. To functionally uncover the role of Malat1 in metastatic reactivation, we have developed a knock out (KO) model by using paired gRNA CRISPR-Cas9 deletion approach in metastatic breast and other cancer types, including lung, colon and melanoma. As proof of concept we also used inducible knockdown system under in vivo models. To delineate the immune micro-environment, we have used 10X genomics single cell RNA-seq, ChIRP-seq, multi-color flowcytometry, RNA-FISH and immunofluorescence.ResultsOur results reveal that the deletion of Malat1 abrogates the tumorigenic and metastatic potential of these tumors and supports long-term survival without affecting their ploidy, proliferation, and nuclear speckles formation. In contrast, overexpression of Malat1 leads to metastatic reactivation of dormant breast cancer cells. Moreover, the loss of Malat1 in metastatic cells induces dormancy features and inhibits cancer stemness. Our RNA-seq and ChIRP-seq data indicate that Malat1 KO downregulates several immune evasion and stemness associated genes. Strikingly, Malat1 KO cells exhibit metastatic outgrowth when injected in T cells defective mice. Our single-cell RNA-seq cluster analysis and multi-color flow cytometry data show a greater proportion of T cells and reduce Neutrophils infiltration in KO mice which indicate that the immune microenvironment playing an important role in Malat1-dependent immune evasion. Mechanistically, loss of Malat1 is associated with reduced expression of Serpinb6b, which protects the tumor cells from cytotoxic killing by the T cells. Indeed, overexpression of Serpinb6b rescued the metastatic potential of Malat1 KO cells by protecting against cytotoxic T cells.ConclusionsCollectively, our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system represents a new strategy to inhibit tumor metastatic reactivation.Trial RegistrationN/AEthics ApprovalFor all the animal studies in the present study, the study protocols were approved by the Institutional Animal Care and Use Committee(IACUC) of UT MD Anderson Cancer Center.ConsentN/AReferencesArun G, Diermeier S, Akerman M, et al., Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 2016 Jan 1;30(1):34–51.Filippo G. Giancotti, mechanisms governing metastatic dormancy and reactivation. Cell 2013 Nov 7;155(4):750–764.Gao H, Chakraborty G, Lee-Lim AP, et al., The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012b;150:764–779.Gao H, Chakraborty G, Lee-Lim AP, et al., Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 2014 Nov 18; 111(46): 16532–16537.


2012 ◽  
Vol 11 (11) ◽  
pp. 1457-1467 ◽  
Author(s):  
Olesya Chornoguz ◽  
Alexei Gapeev ◽  
Michael C. O'Neill ◽  
Suzanne Ostrand-Rosenberg

The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii− cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii− cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii− tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii− MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii− cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii− and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii− cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii− cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.


2006 ◽  
Vol 8 (6) ◽  
Author(s):  
Hiroaki Saito ◽  
Peter Dubsky ◽  
Carole Dantin ◽  
Olivera J Finn ◽  
Jacques Banchereau ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3517-3517 ◽  
Author(s):  
Yasushi Kasahara ◽  
Changsu Shin ◽  
Sakiko Yoshida ◽  
Takayuki Takachi ◽  
Nobuhiro Kubo ◽  
...  

Abstract Genetic modification of T cells with an artificial tumor-targeting chimeric antigen receptor (CAR) is a new approach for adoptive cell therapy for cancer. Defining cell surface molecules that are both selectively expressed on cancer cells and can be safely targeted with T cells or NK cells is a significant challenge in this research field. NKp44 is a member of the natural cytotoxicity receptor (NCR) families and also known as NCR2. Expression of NKp44 is limited to activating NK cells, which leads to a marked increase in cytotoxicity against tumors. The receptor contains one extracellular immunoglobulin domain, type I transmembrane (TM) domain, and intracellular (IC) domain, and its surface expression seems to require binding of the TM domain to adaptor molecules of DAP12 accessory protein that contains ITAMs. The ligand for NKp44 is considered damage-associated molecular pattern molecules, which have been reported to be expressed by various types of cancer cells but not by healthy cells. Therefore, a wide range of cancer cells may be safely targeted if the ligand-binding domain of this receptor is used in a construction of a chimeric antigen receptor (CAR) as an antigen recognition site, instead of using single chain variable domains derived from monoclonal antibody. We created several NKp44-based CAR constructs, which shares the extracellular NKp44 IG domain as a ligand-binding domain. Surface expression levels and subsequent functional properties can differ among T cells or NK cells transduced with novel CARs with different structural characteristics. We thus tested whether swapping the domains other than the antigen-binding domain affected expression and function. The CAR genes were retrovirally transduced into human primary T cells according to a standard method. We also transduced human primary NK cells with NKp44-based CARs, by a previously reported method (Imai C, et al. Blood 2005), to compare the expression pattern of the CAR in NK cells with that in human T cells. Retroviral transfer of wild type NKp44 gene and a construct harboring IC(p44) both did not induce NKp44 surface expression (Fig 1A,B). By sharp contrast, primary NK cells were able to express the CAR protein on the cell surface after transfer of these two genes. Removal of the IC(p44) [EH(p44)-TM(p44)-IC(CD3z)] allowed slight surface expression in T cells (Fig1C). The replacement of TM(p44) with TM(CD8a) resulted in higher surface expression in T cells (Fig 1D). These observations indicated the presence of IC(p44) as well as TM(p44) in the CAR constructs hampered surface expression in T cells most likely due to the lack of DAP12 expression. In addition to TM replacement, replacement of EH(p44) with EH(CD8a) markedly increased surface expression of the CAR (Fig 1E). Similarly, we tested use of CD28 domains instead of CD8a. Surprisingly, as different from the case of CD8a, the construct EH(p44)-TM(CD28)-IC(CD3z) yielded highest surface expression among the all CAR constructs created in this study in T cells as well as in NK cells (Fig1F), while the replacement of EH(p44) of the abovementioned CAR with EH(CD28) resulted in marked reduction of the CAR expression (Fig 1G). We confirmed surface expression of NKp44 ligand with flow cytometric analysis using recombinant human NKp44 Fc chimera protein (R&D Systems, McKinley Place, Minneapolis, USA) on various tumor cell lines including myeloid leukemia (K562, THP-1, U937, KY821, HL60), T-cell leukemia (PEER, MOLT4, HSB2), Burkitt lymphoma (Raji), BCR-ABL-positive B-ALL (OP-1), osteosarcoma (MG63, NOS1, NOS2, NOS10, U2OS, SaOS2), rhabdomyosarcoma (Rh28, RMS-YM), neuroblastoma (SK-N-SH, NB1, NB16, IMR32), and cervical carcinoma (Hela). Function of the best construct [EH(p44)-TM(CD28)-IC(CD3z)] was further evaluated. Primary T cells transduced with this NKp44-based CAR exerted powerful cytotoxicity against tumor cell lines tested and produced interferon-g and granzyme B, while GFP-transduced T cells and control T cells transduced with truncated NKp44-based CAR did not. In conclusion, we have created a novel CAR based on the antigen-binding property derived from NKp44 receptor immunoglobulin domain. This CAR should be effective to redirect T cells as well as NK cells against various types of cancer including hematological malignancies. Figure 1 Schematic representation of gene constructs and their surface expression of NKp44-based CARs in human T cells and NK cells. Figure 1. Schematic representation of gene constructs and their surface expression of NKp44-based CARs in human T cells and NK cells. Disclosures Imai: Juno Therapeutics: Patents & Royalties.


Oncogene ◽  
2006 ◽  
Vol 25 (54) ◽  
pp. 7201-7211 ◽  
Author(s):  
J Wang ◽  
Z-L Ou ◽  
Y-F Hou ◽  
J-M Luo ◽  
Z-Z Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document