scholarly journals Restraining Akt1 Phosphorylation Attenuates the Repair of Radiation-Induced DNA Double-Strand Breaks and Reduces the Survival of Irradiated Cancer Cells

2018 ◽  
Vol 19 (8) ◽  
pp. 2233 ◽  
Author(s):  
Klaudia Szymonowicz ◽  
Sebastian Oeck ◽  
Adam Krysztofiak ◽  
Jansje van der Linden ◽  
George Iliakis ◽  
...  

The survival kinase protein kinase B (Akt) participates in the regulation of essential subcellular processes, e.g., proliferation, growth, survival, and apoptosis, and has a documented role in promoting resistance against genotoxic stress including radiotherapy, presumably by influencing the DNA damage response and DNA double-strand break (DSB) repair. However, its exact role in DSB repair requires further elucidation. We used a genetic approach to explore the consequences of impaired phosphorylation of Akt1 at one or both of its key phosphorylation sites, Threonine 308 (T308) or Serine 473 (S473), on DSB repair and radiosensitivity to killing. Therefore, we overexpressed either the respective single or the double phosphorylation-deficient mutants (Akt1-T308A, Akt1-S473A, or Akt1-T308A/S473A) in TRAMPC1 murine prostate cancer cells (TrC1) and measured the DSB repair kinetics and clonogenic cell survival upon irradiation. Only the expression of the Akt1-T308A/S473A induced a significant delay in the kinetics of DSB repair in irradiated TrC1 as determined by the γH2A.X (H2A histone family, member X) assay and the neutral comet assay, respectively. Moreover, Akt1-T308A/S473A-expressing cells were characterized by increased radiosensitivity compared to Akt1-WT (wild type)-expressing cells in long-term colony formation assays. Our data reveal that Akt1’s activation state is important for the cellular radiation response, presumably by modulating the phosphorylation of effector proteins involved in the regulation of DSB repair.

2021 ◽  
Author(s):  
Takaaki Yasuhara ◽  
Reona Kato ◽  
Motohiro Yamauchi ◽  
Yuki Uchihara ◽  
Lee Zou ◽  
...  

AbstractR-loops, consisting of ssDNA and DNA-RNA hybrids, are potentially vulnerable unless they are appropriately processed. Recent evidence suggests that R-loops can form in the proximity of DNA double-strand breaks (DSBs) within transcriptionally active regions. Yet, how the vulnerability of R-loops is overcome during DSB repair remains unclear. Here, we identify RAP80 as a factor suppressing the vulnerability of ssDNA in R-loops and chromosome translocations and deletions during DSB repair. Mechanistically, RAP80 prevents unscheduled nucleolytic processing of ssDNA in R-loops by CtIP. This mechanism promotes efficient DSB repair via transcription-associated end-joining dependent on BRCA1, Polθ, and LIG1/3. Thus, RAP80 suppresses the vulnerability of R-loops during DSB repair, thereby precluding genomic abnormalities in a critical component of the genome caused by deleterious R-loop processing.


2016 ◽  
Vol 13 (114) ◽  
pp. 20150679 ◽  
Author(s):  
Philip J. Murray ◽  
Bart Cornelissen ◽  
Katherine A. Vallis ◽  
S. Jon Chapman

DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γ H2AX. Many copies of γ H2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti- γ H2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo . Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111 In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti- γ H2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti- γ H2AX-TAT and γ H2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti- γ H2AX antibody is labelled with Auger electron-emitting 111 In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti- γ H2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti- γ H2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage accumulation in the presence of Auger electron-emitting 111 In that is supported qualitatively by the available experimental data.


2020 ◽  
Author(s):  
Qinglei Hang ◽  
Liyong Zeng ◽  
Li Wang ◽  
Litong Nie ◽  
Fan Yao ◽  
...  

Abstract Cells respond to cytotoxic DNA double-strand breaks (DSBs) by recruiting repair proteins to the damaged sites. During the DNA damage response, ubiquitin signaling plays a critical role in coordinating protein recruitment. Here, we find that the microRNA biogenesis factor DGCR8 promotes tumor resistance to X-ray radiation independently of its Drosha-binding ability. In response to radiation, the deubiquitinase USP51 and the kinase ATM mediate the stabilization and activation of DGCR8 through deubiquitination and phosphorylation, respectively. While radiation-induced USP51 binds, deubiquitinates, and stabilizes DGCR8, ATM-dependent phosphorylation of DGCR8 at serine 677 leads to the recruitment of DGCR8 and DGCR8’s binding partner RNF168 to MDC1 and RNF8. This, in turn, promotes ubiquitination of histone H2A, repair of DSBs, and radioresistance. Altogether, these findings reveal the non-canonical function of DGCR8 in DSB repair and suggest that radiation treatment may result in therapy-induced tumor radioresistance through USP51- and ATM-mediated upregulation and activation of DGCR8.


2020 ◽  
Vol 48 (18) ◽  
pp. 10342-10352
Author(s):  
Tshering D Lama-Sherpa ◽  
Victor T G Lin ◽  
Brandon J Metge ◽  
Shannon E Weeks ◽  
Dongquan Chen ◽  
...  

Abstract Ribosomal DNA (rDNA) consists of highly repeated sequences that are prone to incurring damage. Delays or failure of rDNA double-strand break (DSB) repair are deleterious, and can lead to rDNA transcriptional arrest, chromosomal translocations, genomic losses, and cell death. Here, we show that the zinc-finger transcription factor GLI1, a terminal effector of the Hedgehog (Hh) pathway, is required for the repair of rDNA DSBs. We found that GLI1 is activated in triple-negative breast cancer cells in response to ionizing radiation (IR) and localizes to rDNA sequences in response to both global DSBs generated by IR and site-specific DSBs in rDNA. Inhibiting GLI1 interferes with rDNA DSB repair and impacts RNA polymerase I activity and cell viability. Our findings tie Hh signaling to rDNA repair and this heretofore unknown function may be critically important in proliferating cancer cells.


2005 ◽  
Vol 25 (8) ◽  
pp. 3127-3139 ◽  
Author(s):  
Julie S. Martin ◽  
Nicole Winkelmann ◽  
Mark I. R. Petalcorin ◽  
Michael J. McIlwraith ◽  
Simon J. Boulton

ABSTRACT The BRCA2 tumor suppressor is implicated in DNA double-strand break (DSB) repair by homologous recombination (HR), where it regulates the RAD51 recombinase. We describe a BRCA2-related protein of Caenorhabditis elegans (CeBRC-2) that interacts directly with RAD-51 via a single BRC motif and that binds preferentially to single-stranded DNA through an oligonucleotide-oligosaccharide binding fold. Cebrc-2 mutants fail to repair meiotic or radiation-induced DSBs by HR due to inefficient RAD-51 nuclear localization and a failure to target RAD-51 to sites of DSBs. Genetic and cytological comparisons of Cebrc-2 and rad-51 mutants revealed fundamental phenotypic differences that suggest a role for Cebrc-2 in promoting the use of an alternative repair pathway in the absence of rad-51 and independent of nonhomologous end joining (NHEJ). Unlike rad-51 mutants, Cebrc-2 mutants also accumulate RPA-1 at DSBs, and abnormal chromosome aggregates that arise during the meiotic prophase can be rescued by blocking the NHEJ pathway. CeBRC-2 also forms foci in response to DNA damage and can do so independently of rad-51. Thus, CeBRC-2 not only regulates RAD-51 during HR but can also function independently of rad-51 in DSB repair processes.


2009 ◽  
Vol 187 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Troy E. Messick ◽  
Roger A. Greenberg

The intimate relationship between DNA double-strand break (DSB) repair and cancer susceptibility has sparked profound interest in how transactions on DNA and chromatin surrounding DNA damage influence genome integrity. Recent evidence implicates a substantial commitment of the cellular DNA damage response machinery to the synthesis, recognition, and hydrolysis of ubiquitin chains at DNA damage sites. In this review, we propose that, in order to accommodate parallel processes involved in DSB repair and checkpoint signaling, DSB-associated ubiquitin structures must be nonuniform, using different linkages for distinct functional outputs. We highlight recent advances in the study of nondegradative ubiquitin signaling at DSBs, and discuss how recognition of different ubiquitin structures may influence DNA damage responses.


2021 ◽  
Author(s):  
Doraid T. Sadideen ◽  
Baowei Chen ◽  
Manal Basili ◽  
Montaser Shaheen

AbstractDNA double strand breaks (DSBs) are repair by homology-based repair or non-homologous end joining and multiple sub-pathways exist. 53BP1 is a key DNA double strand break repair protein that regulates repair pathway choice. It is key for joining DSBs during immunoglobulin heavy chain class switch recombination. Here we identify USP47 as a deubiquitylase that associates with and regulates 53BP1 function. USP47 loss results in 53BP1 instability in proteasome dependent manner, and defective 53BP1 ionizing radiation induced foci (IRIF). USP47 catalytic activity is required for maintaining 53BP1 protein level. Similar to 53BP1, USP47 depletion results in sensitivity to DNA DSB inducing agents and defective immunoglobulin CSR. Our findings establish a function for USP47 in DNA DSB repair at least partially through 53BP1.


2019 ◽  
Vol 47 (6) ◽  
pp. 1881-1893
Author(s):  
Alexander J. Garvin

The cellular response to genotoxic DNA double strand breaks (DSBs) uses a multitude of post-translational modifications to localise, modulate and ultimately clear DNA repair factors in a timely and accurate manner. Ubiquitination is well established as vital to the DSB response, with a carefully co-ordinated pathway of histone ubiquitination events being a central component of DSB signalling. Other ubiquitin-like modifiers (Ubl) including SUMO and NEDD8 have since been identified as playing important roles in DSB repair. In the last five years ∼20 additional Ub/Ubl proteases have been implicated in the DSB response. The number of proteases identified highlights the complexity of the Ub/Ubl signal present at DSBs. Ub/Ubl proteases regulate turnover, activity and protein–protein interactions of DSB repair factors both catalytically and non-catalytically. This not only ensures efficient repair of breaks but has a role in channelling repair into the correct DSB repair sub-pathways. Ultimately Ub/Ubl proteases have essential roles in maintaining genomic stability. Given that deficiencies in many Ub/Ubl proteases promotes sensitivity to DNA damaging chemotherapies, they could be attractive targets for cancer treatment.


2022 ◽  
Author(s):  
Tej Pandita ◽  
Vijay Kumari Charaka ◽  
Sharmistha Chakraborty ◽  
Chi-Lin Tsai ◽  
Xiaoyan Wang ◽  
...  

Efficient DNA double strand break (DSB) repair by homologous recombination (HR), as orchestrated by histone and non-histone proteins, is critical to genome stability, replication, transcription, and cancer avoidance. Here we report that Heterochromatin Protein1 beta (HP1β) acts as a key component of the HR DNA resection step by regulating BRCA1 enrichment at DNA damage sites, a function largely dependent on the HP1β chromo shadow domain (CSD). HP1β itself is enriched at DSBs within gene-rich regions through a CSD interaction with Chromatin Assembly Factor 1 (CAF1) and HP1β depletion impairs subsequent BRCA1 enrichment. An added interaction of the HP1β CSD with the Polycomb Repressor Complex 1 ubiquitinase component RING1A facilitates BRCA1 recruitment by increasing H2A lysine 118-119 ubiquitination, a marker for BRCA1 recruitment. Our findings reveal that HP1β interactions, mediated through its CSD with RING1A, promote H2A ubiquitination and facilitate BRCA1 recruitment at DNA damage sites, a critical step in DSB repair by the HR pathway. These collective results unveil how HP1β is recruited to DSBs in gene-rich regions and how HP1β subsequently promotes BRCA1 recruitment to further HR DNA damage repair by stimulating CtIP-dependent resection.


2014 ◽  
Vol 206 (7) ◽  
pp. 877-894 ◽  
Author(s):  
Olivia Barton ◽  
Steffen C. Naumann ◽  
Ronja Diemer-Biehs ◽  
Julia Künzel ◽  
Monika Steinlage ◽  
...  

DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein–interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown. In this paper, we identify Plk3 (Polo-like kinase 3) as a novel DSB response factor that phosphorylates CtIP in G1 in a damage-inducible manner and impacts on various cellular processes in G1. First, Plk3 and CtIP enhance the formation of ionizing radiation-induced translocations; second, they promote large-scale genomic deletions from restriction enzyme-induced DSBs; third, they are required for resection and repair of complex DSBs; and finally, they regulate alternative NHEJ processes in Ku−/− mutants. We show that mutating CtIP at S327 or T847 to nonphosphorylatable alanine phenocopies Plk3 or CtIP loss. Plk3 binds to CtIP phosphorylated at S327 via its Polo box domains, which is necessary for robust damage-induced CtIP phosphorylation at S327 and subsequent CtIP phosphorylation at T847.


Sign in / Sign up

Export Citation Format

Share Document