scholarly journals LOXL2—A New Target in Antifibrogenic Therapy?

2019 ◽  
Vol 20 (7) ◽  
pp. 1634 ◽  
Author(s):  
Angela Puente ◽  
Jose Fortea ◽  
Joaquin Cabezas ◽  
Maria Arias Loste ◽  
Paula Iruzubieta ◽  
...  

The concept of liver fibrosis and cirrhosis being static and therefore irreversible is outdated. Indeed, both human and animal studies have shown that fibrogenesis is a dynamic and potentially reversible process that can be modulated either by stopping its progression and/or by promoting its resolution. Therefore, the study of the molecular mechanisms involved in the pathogenesis of liver fibrosis is critical for the development of future antifibrotic therapies. The fibrogenesis process, common to all forms of liver injury, is characterized by the increased deposition of extracellular matrix components (EMCs), including collagen, proteoglycans, and glycoproteins (laminin and fibronectin 2). These changes in the composition of the extracellular matrix components alter their interaction with cell adhesion molecules, influencing the modulation of cell functions (growth, migration, and gene expression). Hepatic stellate cells and Kupffer cells (liver macrophages) are the key fibrogenic effectors. The antifibrogenic mechanism starts with the activation of Ly6Chigh macrophages, which can differentiate into macrophages with antifibrogenic action. The research of biochemical changes affecting fibrosis irreversibility has identified lysyl oxidase-like 2 (LOXL2), an enzyme that promotes the network of collagen fibers of the extracellular matrix. LOXL2 inhibition can decrease cell numbers, proliferation, colony formations, and cell growth, and it can induce cell cycle arrest and increase apoptosis. The development of a new humanized IgG4 monoclonal antibody against LOXL2 could open the window of a new antifibrogenic treatment. The current therapeutic target in patients with liver cirrhosis should focus (after the eradication of the causal agent) on the development of new antifibrogenic drugs. The development of these drugs must meet three premises: Patient safety, in non-cirrhotic phases, down-staging or at least stabilization and slowing the progression to cirrhosis must be achieved; whereas in the cirrhotic stage, the objective should be to reduce fibrosis and portal pressure.

2007 ◽  
Vol 156 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Alper Gürlek ◽  
Niki Karavitaki ◽  
Olaf Ansorge ◽  
John A H Wass

Prolactinoma is the most common pituitary tumour in adults. Macroprolactinomas, particularly in men, may occasionally exhibit a very aggressive clinical course as evidenced by progressive growth, invasion through bone into the sphenoid sinus, cavernous sinus, suprasellar region or the nasopharynx. Some may even progress to pituitary carcinoma with craniospinal or systemic metastases. Aggressive tumours have low cure rates despite appropriate medical and surgical treatment. The mechanisms underlying this aggressive biological behaviour have not yet been fully clarified. Recent immunohistochemical, molecular and genetic studies have provided some insight in this respect. Invasive prolactinomas may be associated with a high Ki-67/MIB-1 labelling index indicating increased cell proliferation, although this is not a universal finding. The AA polymorphism in the cyclin adenine (A)/guanine (G) gene is more frequently detected in invasive prolactinomas. Increased expression of the polysialylated neural cell adhesion molecule (NCAM) and reduced expression of the E-cadherin/catenin complex implies a contribution of altered cell-to-cell adhesion and cellular migration. Extracellular matrix components (ECM), matrix metalloproteinases (MMPs) and their inhibitors play important roles in the context of angiogenesis and invasion. The induction of fibroblast growth factor and vascular endothelial growth factor via oestrogen-induced overexpression of novel genes (PTTG, hst and Edpm5) enhance cell growth, proliferation and angiogenesis contributing to invasiveness in prolactinomas. Although mutations in proto-oncogenes like Ras are uncommon, loss of tumour suppressor genes at loci 11q13, 13q12–14, 10q and 1p seem to be associated with invasiveness. Of the described mechanisms, only reduced E-cadherin/catenin expression and overexpression of hst gene seem to be relatively specific markers for prolactinoma invasiveness compared with other pituitary adenomas. Further research is needed to clarify the molecular mechanisms behind the aggressive course of some prolactinomas to predict those with a potentially poor clinical outcome, and to devise treatments that will eventually enable the cure of these challenging tumours.


2021 ◽  
pp. 002203452110184
Author(s):  
J. Moradian-Oldak ◽  
A. George

Biomineralization of enamel, dentin, and bone involves the deposition of apatite mineral crystals within an organic matrix. Bone and teeth are classic examples of biomaterials with unique biomechanical properties that are crucial to their function. The collagen-based apatite mineralization and the important function of noncollagenous proteins are similar in dentin and bone; however, enamel is formed in a unique amelogenin-containing protein matrix. While the structure and organic composition of enamel are different from those of dentin and bone, the principal molecular mechanisms of protein–protein interactions, protein self-assembly, and control of crystallization events by the organic matrix are common among these apatite-containing tissues. This review briefly summarizes enamel and dentin matrix components and their interactions with other extracellular matrix components and calcium ions in mediating the mineralization process. We highlight the crystallization events that are controlled by the protein matrix and their interactions in the extracellular matrix during enamel and dentin biomineralization. Strategies for peptide-inspired biomimetic growth of tooth enamel and bioinspired mineralization of collagen to stimulate repair of demineralized dentin and bone tissue engineering are also addressed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shaohua Wu ◽  
Vikas Kumar ◽  
Peng Xiao ◽  
Mitchell Kuss ◽  
Jung Yul Lim ◽  
...  

AbstractHeart valve disease is a common manifestation of cardiovascular disease and is a significant cause of cardiovascular morbidity and mortality worldwide. The pulmonary valve (PV) is of primary concern because of its involvement in common congenital heart defects, and the PV is usually the site for prosthetic replacement following a Ross operation. Although effects of age on valve matrix components and mechanical properties for aortic and mitral valves have been studied, very little is known about the age-related alterations that occur in the PV. In this study, we isolated PV leaflets from porcine hearts in different age groups (~ 4–6 months, denoted as young versus ~ 2 years, denoted as adult) and studied the effects of age on PV leaflet thickness, extracellular matrix components, and mechanical properties. We also conducted proteomics and RNA sequencing to investigate the global changes of PV leaflets and passage zero PV interstitial cells in their protein and gene levels. We found that the size, thickness, elastic modulus, and ultimate stress in both the radial and circumferential directions and the collagen of PV leaflets increased from young to adult age, while the ultimate strain and amount of glycosaminoglycans decreased when age increased. Young and adult PV had both similar and distinct protein and gene expression patterns that are related to their inherent physiological properties. These findings are important for us to better understand the physiological microenvironments of PV leaflet and valve cells for correctively engineering age-specific heart valve tissues.


2006 ◽  
Vol 12 (4) ◽  
pp. 831-842 ◽  
Author(s):  
Sepideh Heydarkhan-Hagvall ◽  
Maricris Esguerra ◽  
Gisela Helenius ◽  
Rigmor Söderberg ◽  
Bengt R. Johansson ◽  
...  

Soft Matter ◽  
2015 ◽  
Vol 11 (38) ◽  
pp. 7648-7655 ◽  
Author(s):  
Paul Lee ◽  
Katelyn Tran ◽  
Gan Zhou ◽  
Asheesh Bedi ◽  
Namdev B. Shelke ◽  
...  

A biphasic micro and nanostructured scaffold with hydroxyapatite and extracellular matrix components was created for the regeneration of osteochondral tissue. Material cues of the biphasic scaffold supported differentiation of bone marrow stromal cells in both osteogenic and chondrogenic lineages.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pawel Olczyk ◽  
Łukasz Mencner ◽  
Katarzyna Komosinska-Vassev

Wound healing is the physiologic response to tissue trauma proceeding as a complex pathway of biochemical reactions and cellular events, secreted growth factors, and cytokines. Extracellular matrix constituents are essential components of the wound repair phenomenon. Firstly, they create a provisional matrix, providing a structural integrity of matrix during each stage of healing process. Secondly, matrix molecules regulate cellular functions, mediate the cell-cell and cell-matrix interactions, and serve as a reservoir and modulator of cytokines and growth factors’ action. Currently known mechanisms, by which extracellular matrix components modulate each stage of the process of soft tissue remodeling after injury, have been discussed.


Sign in / Sign up

Export Citation Format

Share Document