scholarly journals Apoptotic or Antiproliferative Activity of Natural Products against Keratinocytes for the Treatment of Psoriasis

2019 ◽  
Vol 20 (10) ◽  
pp. 2558 ◽  
Author(s):  
Tse-Hung Huang ◽  
Chwan-Fwu Lin ◽  
Ahmed Alalaiwe ◽  
Shih-Chun Yang ◽  
Jia-You Fang

Natural products or herbs can be used as an effective therapy for treating psoriasis, an autoimmune skin disease that involves keratinocyte overproliferation. It has been demonstrated that phytomedicine, which is used for psoriasis patients, provides some advantages, including natural sources, a lower risk of adverse effects, and the avoidance of dissatisfaction with conventional therapy. The herbal products’ structural diversity and multiple mechanisms of action have enabled the synergistic activity to mitigate psoriasis. In recent years, the concept of using natural products as antiproliferative agents in psoriasis treatment has attracted increasing attention in basic and clinical investigations. This review highlights the development of an apoptotic or antiproliferatic strategy for natural-product management in the treatment of psoriasis. We systematically introduce the concepts and molecular mechanisms of keratinocyte-proliferation inhibition by crude extracts or natural compounds that were isolated from natural resources, especially plants. Most of these studies focus on evaluation through an in vitro keratinocyte model and an in vivo psoriasis-like animal model. Topical delivery is the major route for the in vivo or clinical administration of these natural products. The potential use of antiproliferative phytomedicine on hyperproliferative keratinocytes suggests a way forward for generating advances in the field of psoriasis therapy.

2021 ◽  
Vol 14 ◽  
Author(s):  
Emeline Cros-Perrial ◽  
Steve Saulnier ◽  
Muhammad Zawwad Raza ◽  
Rémi Charmelot ◽  
David Egron ◽  
...  

Background: The development of small molecules as cancer treatments is still of both interest and importance. Objective: Having synthesized and identified the initial cytotoxic activity of a series of chemically related N-(9H-purin-6-yl) benzamide derivatives, we continued their evaluation on cancer cell models. We also synthesized water-soluble prodrugs of the main compound and performed in vivo experiments. Method: We used organic chemistry to obtain compounds of interest and prodrugs. The biological evaluation included MTT assays, synergy experiments, proliferation assays by CFSE, cell cycle distribution and in vivo antitumoral activity. Results: Our results show activities on cancer cell lines ranging from 3-39 µM for the best compounds, with both induction of apoptosis and decrease in cell proliferation. Two compounds evaluated in vivo showed weak antitumoral activity. In addition, the lead compound and its prodrug had a synergistic activity with the nucleoside analogue fludarabine in vitro and in vivo. Conclusion: Our work allowed us to gain better knowledge on the activity of N-(9H-purin-6-yl) benzamide derivatives and showed new examples of water-soluble prodrugs. More research is warranted to decipher the molecular mechanisms of the molecules.


Author(s):  
Yi-Chao Zheng ◽  
Yue-Jiao Liu ◽  
Ya Gao ◽  
Bo Wang ◽  
Hong-Min Liu

Background: As a FAD (Flavin Adenine Dinucleotide) - dependent histone demethylase discovered in 2004, LSD1 (lysine specific demethylase 1) was reported to be overexpressed in diverse tumors, regulating target genes transcription associated with cancer development. Hence, LSD1 targeted inhibitors may represent a new insight in anticancer drug discovery. For these reasons, researchers in both the pharmaceutical industry and academia have been actively pursuing LSD1 inhibitors in the quest for new anti-cancer drugs. Objectives: This review summaries patents about LSD1 inhibitors in recent 5 years in hope of providing a reference for LSD1 researchers to develop new modulators of LSD1 with higher potency and fewer adverse effects. Methods: This review collects LSD1 inhibitors disclosed in patents since 2016. The primary ways of patent searching are Espacenet®, Google Patents, and CNKI. Results: This review covers dozens of patents related to LSD1 inhibitors in recent five years. The compound structures are mainly divided into TCP (Tranylcypromine) derivatives, imidazole derivatives, pyrimidine derivatives, and other natural products and peptides. Meanwhile, the compounds that have entered the clinical phase are also described. Conclusion: Most of the compounds in these patents have been subjected to activity analysis with LSD1 and multi-cell lines, showing good antitumor activity in vitro and in vivo. These patents exhibited the structural diversity of LSD1 inhibitors and the potential of natural products as novel LSD1 inhibitors.


2020 ◽  
Vol 9 (1) ◽  
pp. 902-907

Disease can occur due to alterations in many physiological processes. A variety of factorsare known to be involved in the progression of cancer, a chronic diseasethat occurs due to permissible proliferative signaling, avoiding growth suppressors, resisting cell death, allowing replicative immortality, induction of angiogenesis, and inducing invasion and metastasis, along with reprogramming of metabolic pathways involved in energy production and avoiding the host immune response for cell destruction. Treatment of such a multifactorial disease has very less cure rate because of the singular agents tried in the past for targeting. Molecular level studies with deeper insight are urgently neededthat focus on the most promising herbal-derived bioactive substances for which thorough research was carried out in the literature in various data-bases such as PUB-MED, MEDLINE, SCOPUS indexed journals etc. to look for systematic reviews of the protocols or data interpretation, natural drug/immunological properties and validation. As immune system plays avery important role in the proliferation or suppression of cancer and other autoimmune diseases, It is the dire need to study the effect of such natural compound on the immune system so that a possible drug target or epitope can be identified for the treatment of such diseases. In nutshell there are many nonclinical in vitro and in vivo studies on herbal medicines which commonly supports the traditional therapeutic claims. It has been seen from the previos studies in literature that the yield and composition of bioactive compounds derived from plants are dependent upon the production source,culturing conditions and extraction protocols.Therefore appropriate optimization conditions would certainly assist the medical and scientific fraternity to accept herbal products as potential candidates for cancer treatment. In this article we explored the different natural products, their immunological effects concerning cancer with no or negligible side effects. However,one has to look for potential herb–drug or herb-epitope interactions and how immune system responds to such drugs.


Author(s):  
Giulia Vanti

AbstractNatural products are major molecules for drug discovery due to their structural diversity and their interaction with various biological targets, yet their clinical application is limited by poor water solubility or low lipophilicity, inappropriate molecular size, low dissolution rate and permeation, instability, high metabolic rate and rapid clearance. These issues can be solved by nanomedicine, by improving bioavailability and therapeutic efficacy. Here we review nanocarriers made of polymer or lipid constituents. Specifically, we describe the technological characteristics of each nanosystem, with examples of application to single natural constituents or plant extracts, and possible routes of administration. We report in vitro and in vivo studies and we conclude with the potential advantages of nanodelivery systems in terms of increased stability and solubility, improved biodistribution and efficacy, reduced adverse effects and toxicity.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xiaoqi Pan ◽  
Xiao Ma ◽  
Yinxiao Jiang ◽  
Jianxia Wen ◽  
Lian Yang ◽  
...  

Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
MJ Groot ◽  
MG Pikkemaat ◽  
WD Driessen van Lankveld
Keyword(s):  

2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


Sign in / Sign up

Export Citation Format

Share Document