scholarly journals Raman Evidence of p53-DBD Disorder Decrease upon Interaction with the Anticancer Protein Azurin

2019 ◽  
Vol 20 (12) ◽  
pp. 3078 ◽  
Author(s):  
Sara Signorelli ◽  
Salvatore Cannistraro ◽  
Anna Rita Bizzarri

Raman spectroscopy, which is a suitable tool to elucidate the structural properties of intrinsically disordered proteins, was applied to investigate the changes in both the structure and the conformational heterogeneity of the DNA-binding domain (DBD) belonging to the intrinsically disordered protein p53 upon its binding to Azurin, an electron-transfer anticancer protein from Pseudomonas aeruginosa. The Raman spectra of the DBD and Azurin, isolated in solution or forming a complex, were analyzed by a combined analysis based on peak inspection, band convolution, and principal component analysis (PCA). In particular, our attention was focused on the Raman peaks of Tyrosine and Tryptophan residues, which are diagnostic markers of protein side chain environment, and on the Amide I band, of which the deconvolution allows us to extract information about α-helix, β-sheet, and random coil contents. The results show an increase of the secondary structure content of DBD concomitantly with a decrease of its conformational heterogeneity upon its binding to Azurin. These findings suggest an Azurin-induced conformational change of DBD structure with possible implications for p53 functionality.

2016 ◽  
Vol 71 (5) ◽  
pp. 823-832 ◽  
Author(s):  
Sara Signorelli ◽  
Salvatore Cannistraro ◽  
Anna Rita Bizzarri

The intrinsically disordered protein p53 has attracted a strong interest for its important role in genome safeguarding and potential therapeutic applications. However, its disordered character makes difficult a full characterization of p53 structural architecture. A deep knowledge of p53 structural motifs could significantly help the understanding of its functional properties, in connection with its complex binding network. We have applied Raman spectroscopy to investigate the structural composition and the conformational heterogeneity of both full-length p53 and its DNA binding domain (DBD), in different solvent environments. In particular, a careful analysis of the Amide I Raman band, which is highly sensitive to protein secondary structure elements such as α-helices, β-sheets and random coils, has revealed the presence of extended random coils in p53 and predominant β-sheet regions in its DBD. In addition, this analysis has allowed us to explore the ensemble of interchanging conformations in both p53 and its DBD, highlighting a higher conformational heterogeneity in p53 than in its DBD. Furthermore, by applying a principal components analysis, we have identified the principal spectral markers in both p53 and DBD samples. The combination of the two approaches could be insightful for the study of intrinsically disordered proteins, by offering increased versatility and wide application as a label-free, real-time and non-invasive detection method.


2019 ◽  
Vol 116 (41) ◽  
pp. 20446-20452 ◽  
Author(s):  
Utsab R. Shrestha ◽  
Puneet Juneja ◽  
Qiu Zhang ◽  
Viswanathan Gurumoorthy ◽  
Jose M. Borreguero ◽  
...  

Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.


2019 ◽  
Author(s):  
Valentin Bauer ◽  
Boris Schmidtgall ◽  
Gergő Gógl ◽  
Jozica Dolenc ◽  
Judit Osz ◽  
...  

Intrinsically disordered proteins (IDPs), which undergo folding upon binding to their targets, are critical players in protein interaction networks. Here we demonstrate that incorporation of non-canonical alpha-methylated amino acids into the unstructured activation domain of the transcriptional coactivator ACTR can stabilize helical conformations and strengthen binding interactions with the nuclear coactivator binding domain (NCBD) of CREB-binding protein (CBP). A combinatorial alpha-methylation scan of the ACTR sequence converged on two substitutions at positions 1055 and 1076 that increase affinity for both NCBD and the full length 270 kDa CBP by one order of magnitude. The first X-ray structure of the modified ACTR domain bound to NCBD revealed that the key alpha-methylated amino acids were localized within alpha-helices. Biophysical studies showed that the observed changes in binding energy are the result of long-range interactions and redistribution of enthalpy and entropy. This proof-of-concept study establishes a potential strategy for selective inhibition of protein-protein interactions involving IDPs in cells.<br>


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1265 ◽  
Author(s):  
Sergei E. Permyakov ◽  
Eugene A. Permyakov ◽  
Vladimir N. Uversky

We show here that chicken gizzard caldesmon (CaD) and its C-terminal domain (residues 636–771, CaD136) are intrinsically disordered proteins. The computational and experimental analyses of the wild type CaD136and series of its single tryptophan mutants (W674A, W707A, and W737A) and a double tryptophan mutant (W674A/W707A) suggested that although the interaction of CaD136with calmodulin (CaM) can be driven by the non-specific electrostatic attraction between these oppositely charged molecules, the specificity of CaD136-CaM binding is likely to be determined by the specific packing of important CaD136tryptophan residues at the CaD136-CaM interface. It is suggested that this interaction can be described as the “buttons on a charged string” model, where the electrostatic attraction between the intrinsically disordered CaD136and the CaM is solidified in a “snapping buttons” manner by specific packing of the CaD136“pliable buttons” (which are the short segments of fluctuating local structure condensed around the tryptophan residues) at the CaD136-CaM interface. Our data also show that all three “buttons” are important for binding, since mutation of any of the tryptophans affects CaD136-CaM binding and since CaD136remains CaM-buttoned even when two of the three tryptophans are mutated to alanines.


2012 ◽  
Vol 40 (5) ◽  
pp. 995-999 ◽  
Author(s):  
Brigitte Gontero ◽  
Stephen C. Maberly

Many proteins contain disordered regions under physiological conditions and lack specific three-dimensional structure. These are referred to as IDPs (intrinsically disordered proteins). CP12 is a chloroplast protein of approximately 80 amino acids and has a molecular mass of approximately 8.2–8.5 kDa. It is enriched in charged amino acids and has a small number of hydrophobic residues. It has a high proportion of disorder-promoting residues, but has at least two (often four) cysteine residues forming one (or two) disulfide bridge(s) under oxidizing conditions that confers some order. However, CP12 behaves like an IDP. It appears to be universally distributed in oxygenic photosynthetic organisms and has recently been detected in a cyanophage. The best studied role of CP12 is its regulation of the Calvin cycle responsible for CO2 assimilation. Oxidized CP12 forms a supramolecular complex with two key Calvin cycle enzymes, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and PRK (phosphoribulokinase), down-regulating their activity. Association–dissociation of this complex, induced by the redox state of CP12, allows the Calvin cycle to be inactive in the dark and active in the light. CP12 is promiscuous and interacts with other enzymes such as aldolase and malate dehydrogenase. It also plays other roles in plant metabolism such as protecting GAPDH from inactivation and scavenging metal ions such as copper and nickel, and it is also linked to stress responses. Thus CP12 seems to be involved in many functions in photosynthetic cells and behaves like a jack of all trades as well as being a master of the Calvin cycle.


2019 ◽  
Vol 73 (12) ◽  
pp. 713-725 ◽  
Author(s):  
Ruth Hendus-Altenburger ◽  
Catarina B. Fernandes ◽  
Katrine Bugge ◽  
Micha B. A. Kunze ◽  
Wouter Boomsma ◽  
...  

Abstract Phosphorylation is one of the main regulators of cellular signaling typically occurring in flexible parts of folded proteins and in intrinsically disordered regions. It can have distinct effects on the chemical environment as well as on the structural properties near the modification site. Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins (IDPs) and the reliability of the analysis depends on an appropriate choice of random coil model. Random coil chemical shifts and sequence correction factors were previously determined for an Ac-QQXQQ-NH2-peptide series with X being any of the 20 common amino acids. However, a matching dataset on the phosphorylated states has so far only been incompletely determined or determined only at a single pH value. Here we extend the database by the addition of the random coil chemical shifts of the phosphorylated states of serine, threonine and tyrosine measured over a range of pH values covering the pKas of the phosphates and at several temperatures (www.bio.ku.dk/sbinlab/randomcoil). The combined results allow for accurate random coil chemical shift determination of phosphorylated regions at any pH and temperature, minimizing systematic biases of the secondary chemical shifts. Comparison of chemical shifts using random coil sets with and without inclusion of the phosphoryl group, revealed under/over estimations of helicity of up to 33%. The expanded set of random coil values will improve the reliability in detection and quantification of transient secondary structure in phosphorylation-modified IDPs.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3265 ◽  
Author(s):  
Vladimir N. Uversky

Cells are inhomogeneously crowded, possessing a wide range of intracellular liquid droplets abundantly present in the cytoplasm of eukaryotic and bacterial cells, in the mitochondrial matrix and nucleoplasm of eukaryotes, and in the chloroplast’s stroma of plant cells. These proteinaceous membrane-less organelles (PMLOs) not only represent a natural method of intracellular compartmentalization, which is crucial for successful execution of various biological functions, but also serve as important means for the processing of local information and rapid response to the fluctuations in environmental conditions. Since PMLOs, being complex macromolecular assemblages, possess many characteristic features of liquids, they represent highly dynamic (or fuzzy) protein–protein and/or protein–nucleic acid complexes. The biogenesis of PMLOs is controlled by specific intrinsically disordered proteins (IDPs) and hybrid proteins with ordered domains and intrinsically disordered protein regions (IDPRs), which, due to their highly dynamic structures and ability to facilitate multivalent interactions, serve as indispensable drivers of the biological liquid–liquid phase transitions (LLPTs) giving rise to PMLOs. In this article, the importance of the disorder-based supramolecular fuzziness for LLPTs and PMLO biogenesis is discussed.


2019 ◽  
Vol 20 (20) ◽  
pp. 5136 ◽  
Author(s):  
Mentes ◽  
Magyar ◽  
Fichó ◽  
Simon

Several intrinsically disordered proteins (IDPs) are capable to adopt stable structures without interacting with a folded partner. When the folding of all interacting partners happens at the same time, coupled with the interaction in a synergistic manner, the process is called Mutual Synergistic Folding (MSF). These complexes represent a discrete subset of IDPs. Recently, we collected information on their complexes and created the MFIB (Mutual Folding Induced by Binding) database. In a previous study, we compared homodimeric MSF complexes with homodimeric and monomeric globular proteins with similar amino acid sequence lengths. We concluded that MSF homodimers, compared to globular homodimeric proteins, have a greater solvent accessible main-chain surface area on the contact surface of the subunits, which becomes buried during dimerization. The main driving force of the folding is the mutual shielding of the water-accessible backbones, but the formation of further intermolecular interactions can also be relevant. In this paper, we will report analyses of heterodimeric MSF complexes. Our results indicate that the amino acid composition of the heterodimeric MSF monomer subunits slightly diverges from globular monomer proteins, while after dimerization, the amino acid composition of the overall MSF complexes becomes more similar to overall amino acid compositions of globular complexes. We found that inter-subunit interactions are strengthened, and additionally to the shielding of the solvent accessible backbone, other factors might play an important role in the stabilization of the heterodimeric structures, likewise energy gain resulting from the interaction of the two subunits with different amino acid compositions. We suggest that the shielding of the β-sheet backbones and the formation of a buried structural core along with the general strengthening of inter-subunit interactions together could be the driving forces of MSF protein structural ordering upon dimerization.


2021 ◽  
Author(s):  
Jakob Toudahl Nielsen ◽  
Frans A.A. Mulder

AbstractNMR chemical shifts (CSs) are delicate reporters of local protein structure, and recent advances in random coil CS (RCCS) prediction and interpretation now offer the compelling prospect of inferring small populations of structure from small deviations from RCCSs. Here, we present CheSPI, a simple and efficient method that provides unbiased and sensitive aggregate measures of local structure and disorder. It is demonstrated that CheSPI can predict even very small amounts of residual structure and robustly delineate subtle differences into four structural classes for intrinsically disordered proteins. For structured regions and proteins, CheSPI can assign up to eight structural classes, which coincide with the well-known DSSP classification. The program is freely available, and can either be invoked from URL www.protein-nmr.org as a web implementation, or run locally from command line as a python program. CheSPI generates comprehensive numeric and graphical output for intuitive annotation and visualization of protein structures. A number of examples are provided.


Author(s):  
Rebecca Beveridge ◽  
Lukasz Migas ◽  
Rahul Das ◽  
Rohit Pappu ◽  
Richard Kriwacki ◽  
...  

The global dimensions and amplitudes of conformational fluctuations of intrinsically disordered proteins are governed, in part, by the linear segregation versus clustering of oppositely charged residues within the primary sequence. Ion Mobility-Mass Spectrometry (IM-MS) affords unique advantages for probing the conformational consequences of the linear patterning of oppositely charged residues because it measures and separates proteins electrosprayed from solution on the basis of charge and shape. Here, we use IM-MS to measure the conformational consequences of charge patterning on the C-terminal intrinsically disordered region (p27 IDR) of the cell cycle inhibitory protein p27<sup>Kip1</sup>. We report the range of charge states and accompanying collisional cross section distributions for wild-type p27 IDR and two variants with identical amino acid compositions, k14 and k56, distinguished by the extent of linear mixing versus segregation of oppositely charged residues. Wild-type p27 IDR (k31) and k14 where the oppositely charged residues are more evenly distributed, exhibit a broad distribution of charge states. This is concordant with high degrees of conformational heterogeneity in solution. By contrast, k56 with linear segregation of oppositely charged residues, leads to limited conformational heterogeneity and a narrow distribution of charged states. Molecular dynamics simulations demonstrate that the interplay between chain solvation and intra-chain interactions (self-solvation) leads to conformational distributions that are modulated by salt concentration, with the wild-type sequence showing the most sensitivity to changes in salt concentration. These results suggest that the charge patterning within the wild-type p27 IDR may be optimized to sample both highly solvated and self-solvated conformational states.


Sign in / Sign up

Export Citation Format

Share Document