scholarly journals Which Low-Abundance Proteins are Present in the Human Milieu of Gamete/Embryo Maternal Interaction?

2019 ◽  
Vol 20 (21) ◽  
pp. 5305 ◽  
Author(s):  
Canha-Gouveia ◽  
Paradela ◽  
Ramos-Fernández ◽  
Prieto-Sánchez ◽  
Sánchez-Ferrer ◽  
...  

The improvement of the embryo culture media is of high relevance due to its influence on successful implantation rates, pregnancy, neonatal outcomes, and potential effects in adult life. The ideal conditions for embryo development are those naturally occurring in the female reproductive tract, i.e., the oviductal and uterine fluids. To shed light on the differences between chemical and natural media, we performed the first comparative study of the low abundance proteins in plasma, uterine, and oviductal fluid collected, simultaneously, from healthy and fertile women that underwent a salpingectomy. The rationale for this design derives from the fact that high-abundant proteins in these fluids are usually those coming from blood serum and frequently mask the detection of low abundant proteins with a potentially significant role in specific processes related to the embryo–maternal interaction. The proteomic analysis by 1D-nano LC ESI-MSMS detected several proteins in higher amounts in oviductal fluid when compared to uterine and plasma samples (RL3, GSTA1, EZRI, DPYSL3, GARS, HSP90A). Such oviductal fluid proteins could be a target to improve fertilization rates and early embryo development if used in the culture media. In conclusion, this study presents a high-throughput analysis of female reproductive tract fluids and contributes to the knowledge of oviductal and uterine secretome.

2017 ◽  
Vol 232 (1) ◽  
pp. R1-R26 ◽  
Author(s):  
Shuai Li ◽  
Wipawee Winuthayanon

Animal oviducts and human Fallopian tubes are a part of the female reproductive tract that hosts fertilization and pre-implantation development of the embryo. With an increasing understanding of roles of the oviduct at the cellular and molecular levels, current research signifies the importance of the oviduct on naturally conceived fertilization and pre-implantation embryo development. This review highlights the physiological conditions within the oviduct during fertilization, environmental regulation, oviductal fluid composition and its role in protecting embryos and supplying nutrients. Finally, the review compares different aspects of naturally occurring fertilization and assisted reproductive technology (ART)-achieved fertilization and embryo development, giving insight into potential areas for improvement in this technology.


Reproduction ◽  
2016 ◽  
Vol 152 (4) ◽  
pp. R127-R141 ◽  
Author(s):  
Veronica Maillo ◽  
Maria Jesus Sánchez-Calabuig ◽  
Ricaurte Lopera-Vasquez ◽  
Meriem Hamdi ◽  
Alfonso Gutierrez-Adan ◽  
...  

The oviduct is a complex and organized thin tubular structure connecting the ovary with the uterus. It is the site of final sperm capacitation, oocyte fertilization and, in most species, the first 3–4days of early embryo development. The oviductal epithelium is made up of ciliary and secretory cells responsible for the secretion of proteins and other factors which contribute to the formation of the oviductal fluid. Despite significant research, most of the pathways and oviductal factors implicated in the crosstalk between gametes/early embryo and the oviduct remain unknown. Therefore, studying the oviductal environment is crucial to improve our understanding of the regulatory mechanisms controlling fertilization and embryo development. In vitro systems are a valuable tool to study in vivo pathways and mechanisms, particularly those in the oviducts which in livestock species are challenging to access. In studies of gamete and embryo interaction with the reproductive tract, oviductal epithelial cells, oviductal fluid and microvesicles co-cultured with gametes/embryos represent the most appropriate in vitro models to mimic the physiological conditions in vivo.


2015 ◽  
Vol 27 (4) ◽  
pp. 567 ◽  
Author(s):  
Henry J. Leese

The basic pattern of metabolism in mammalian oocytes and early embryos was established in the 1960s and 1970s, largely in terms of the consumption of oxygen and the utilisation of nutrients present in culture media at the time, mainly glucose, pyruvate and lactate. The potential importance of endogenous fuels was also recognised but was largely ignored, only to be rediscovered quite recently. The 1980s and 1990s saw the arrival of a ‘new generation’ of culture media, characterised metabolically by the addition of amino acids, an initiative driven strongly by the need to improve embryo culture and selection methods in assisted reproductive technologies. This trend has continued alongside some basic metabolic studies and the general recognition of the importance of metabolism in all aspects of biology. A framework for future studies on oocyte and early embryo metabolism has been provided by: (1) the developmental origins of health and disease concept and recognition of the relationship between development, epigenetics and metabolism; (2) the need to understand cell signalling within, and between the cells of, the early embryo; and (3) the importance of identifying the mechanisms underlying dialogue between the oocyte and early embryo and the female reproductive tract.


Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 639-658
Author(s):  
Nicolas Aranciaga ◽  
James D Morton ◽  
Debra K Berg ◽  
Jessica L Gathercole

Cow subfertility is a multi-factorial problem in many countries which is only starting to be unravelled. Molecular biology can provide a substantial source of insight into its causes and potential solutions, particularly through large scale, untargeted omics approaches. In this systematic review, we set out to compile, assess and integrate the latest proteomic and metabolomic research on cow reproduction, specifically that on the female reproductive tract and early embryo. We herein report a general improvement in technical standards throughout the temporal span examined; however, significant methodological limitations are also identified. We propose easily actionable avenues for ameliorating these shortcomings and enhancing the reach of this field. Text mining and pathway analysis corroborate the relevance of proteins and metabolites related to the triad oxidative stress-inflammation-disease on reproductive function. We envisage a breakthrough in cattle reproductive molecular research within the next few years as in vivo sample techniques are improved, omics analysis equipment becomes more affordable and widespread, and software tools for single- and multi-omics data processing are further developed. Additional investigation of the impact of local oxidative stress and inflammation on fertility, both at the local and systemic levels, is key towards realising the full potential of this field.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Munuer. Puigvert ◽  
V. Montalv Pallès ◽  
J Mass. Hernáez ◽  
A García-Faura ◽  
B Marquè. López-Teijón ◽  
...  

Abstract Study question Have multinucleation and reverse cleavage any effect on embryo development and clinical outcomes on IVF treatments? Summary answer Embryos capable of repairing dysmorphisms and developing up to blastocyst stage keep intact their ability to become healthy babies. What is known already Time-lapse systems allow IVF laboratories to perform in-depth analysis of embryo development using the continuous monitoring tool. Some events that are impossible to detect with conventional morphologic evaluation, such as reverse cleavage or multinucleation, can be detected using time-lapse. Even though the low scientific evidence, the presence of these events is considered a negative factor when the embryo quality assessment is performed. However, it has been described the possibility that embryos have self-repair intrinsic methods. Study design, size, duration Retrospective study including data from 3,577 cycles with 21,274 embryos cultured until blastocyst stage using one-step culture media in time-lapse incubators (Embryoscope, Vitrolife) up to day 5/6 between 2014 and 2019. Participants/materials, setting, methods Three embryo groups were considered: Control group, embryos without multinucleation or reverse cleavage (CG; n = 16,897); Multinucleation group, embryos with at least one blastomere multinucleated on D + 2/3 (MNC; n = 3,879) and Reverse Cleavage group, embryos undergoing complete fusion of two blastomeres on D + 2/3 (RC; n = 498). Single embryo transfer was performed on blastocyst stage. Clinical outcome rates were compared between groups and analyzed by Chi-square test. Main results and the role of chance As published by other groups, the 2.3% of our embryos showed at least one reverse cleavage event and we observed multinucleation in the 18.2% of the embryos. Blastocyst rate of dysmorphism groups was significantly lower (p < 0.05) than Control group (MNC=20.0%; RC = 27.7%; CG = 58.0%). Once transferred, MNC and RC evolutive embryos showed significantly lower pregnancy (MNC=47.9%; RC = 46.8%; CG = 60.8%; p < 0.05) and clinical pregnancy rates (MNC=39.4%; RC = 40.4% CG = 50.6%; p < 0.05) than the Control group (p < 0.05). However, during the post-implantational development the negative effect of dysmorphisms disappears, reaching values of live birth rate comparable to the Control group (MNC=28.3%; RC = 31.9% CG = 33.8%; p = 0.17). These results prove the importance of blastocyst culture and the inherent capability of the embryos to overcome some abnormal dynamics as multinucleation and reverse cleavage. Thus, these embryos showing the poor-prognosis events can be considered for transfer or vitrify. Limitations, reasons for caution There is a wide difference on sample size between groups despite the fact that the statistical analysis considers that into account. There are some ongoing pregnancies in all groups. Wider implications of the findings: When analyzing the development of embryos undergoing reverse cleavage and multinucleation, we hypothesize that these embryos could be showing a self-correction mechanism for some type of error detected. Embryos capable of repairing and developing up to blastocyst stage keep intact their ability to become healthy babies. Trial registration number Not applicable


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2158
Author(s):  
Mateo Ruiz-Conca ◽  
Jaume Gardela ◽  
Amaia Jauregi-Miguel ◽  
Cristina A. Martinez ◽  
Heriberto Rodríguez-Martinez ◽  
...  

Rabbits are interesting as research animal models for reproduction, due to their condition of species of induced ovulation, with the release of endogenous gonadotropin-releasing hormone (GnRH) due to coitus. Glucocorticoid (GC) signaling, crucial for physiological homeostasis, is mediated through a yet unclear mechanism, by the GC receptor (NR3C1/GR). After mating, the female reproductive tract undergoes dynamic modifications, triggered by gene transcription, a pre-amble for fertilization and pregnancy. This study tested the hypothesis that when ovulation is induced, the expression of NR3C1 is influenced by sperm-free seminal plasma (SP), similarly to after mating (whole semen), along the different segments of the internal reproductive tract of female rabbits. Semen (mating) was compared to vaginal infusion of sperm-free SP (Experiment 1), and changes over time were also evaluated, i.e., 10, 24, 36, 68, and 72 h post-mating, corresponding to specific stages, i.e., ovulation, fertilization, and the interval of early embryo development up to the morula stage (Experiment 2). All does were treated with GnRH to induce ovulation. Samples were retrieved from seven segments of the reproductive tract (from the cervix to infundibulum), at 20 h post-mating or sperm-free SP infusion (Experiment 1) or at 10, 24, 36, 68, and 72 h post-mating (Experiment 2). Gene expression of NR3C1 was analyzed by qPCR. Results showed an increase in NR3C1 expression in the infundibulum compared to the other anatomical regions in the absence of spermatozoa when sperm-free SP infusion was performed (Experiment 1). Moreover, during the embryo transport through the oviduct, the distal isthmus was time-course upregulated, especially at 72 h, when morulae are retained in this anatomical region, while it was downregulated in the distal uterus at 68 h (Experiment 2). The overall results suggest that NR3C1, the GC receptor gene, assessed in the reproductive tract of does for the first time, shows differential expression changes during the interval of oviductal and uterine embryo transport that may imply a relevant role of the GC action, not only close to the site of ovulation and fertilization, but also in the endometrium.


2007 ◽  
Vol 19 (1) ◽  
pp. 271
Author(s):  
M. Sakatani ◽  
K. Nagayama ◽  
K. Kobayashi ◽  
K. Kobayashi ◽  
K. Morishita ◽  
...  

It is widely reported that heat stress adversely affects the reproductive function of cattle, such as ovarian functions, fertilization, and embryo development. In a previous study, we reported that heat shock decreases embryo development and increases intracellular reactive oxygen species (ROS). Also some antioxidants increase embryo development under conditions of heat shock by reducing the intracellular ROS. Phlorotannins extracted from brown alga are known as a strong antioxidant. However, heat shock and the antioxidative effect of phlorotannins on fertilization and embryo development has not been carefully studied. In the present study, we investigated the effect of heat shock on fertilization and early embryo development, and the protective effect of phlorotannins on embryo development under conditions of heat shock. In all experiments, bovine oocytes were collected from the local abattoir and matured with TCM-199 (Experiment 1). Bovine sperm drops prepared by BO solution were pretreated at 41�C for 4 h with or without 100 ng mL-1 of phlorotannins. After heat shock, oocytes were fertilized in drops at 38.5�C for 6 h. Putative zygotes were cultured with CR1 + 5% FCS at 38.5�C. The percentages of embryos cleaved and developed to blastocysts were evaluated on Days 2 and 8. The percentages of embryo division and development were compared with embryos fertilized with sperm pretreated at 38.5�C for 4 h (Experiment 2). Oocytes were fertilized at 41�C for 6 h with or without 100 ng mL-1 of phlorotannins. Putative zygotes were cultured with CR1 + 5% FCS at 38.5�C. On Days 2 and 8, the percentages of cleaved embryos and those developed to blastocysts were evaluated and compared with embryos fertilized at 38.5�C for 6 h (Experiment 3). Oocytes were fertilized at 38.5�C for 6 h. Putative zygotes were cultured with or without 10 ng mL-1 of phlorotannins in CR1 + 5% FCS. On Day 2, embryos were exposed to 41�C for 6 h as heat shock. After heat shock, embryos were cultured at 38.5�C to Day 8, and embryo development was evaluated. The percentages of embryo development were compared with those for embryos cultured at 38.5�C through to Day 8 without phlorotannins. Mean values were compared by Student's t-test. There were no significant differences in the percentages of embryo cleavage among all experiments. The percentages of embryo development were significantly (P < 0.05) decreased by heat shock in all experiments [Experiment 1: 45.0 vs. 29.2%; Experiment 2: 25.1 vs. 6.6%; Experiment 3: 28.6 vs. 15.3% (control vs. heat shock)]. In contrast, the addition of phlorotannins to the fertilization or culture media tended to improve the embryo development (Experiment 1: 41.9%; Experiment 2: 15.1%; Experiment 3: 22.2%). These results indicate that heat shock affects not only embryo development but also fertilization. And under conditions of heat shock, the addition of phlorotannins would be effective in improving embryo development from fertilization to development.


2016 ◽  
Vol 28 (2) ◽  
pp. 210
Author(s):  
P. Hugon ◽  
J. Lamy ◽  
E. Corbin ◽  
P. Mermillod ◽  
M. Saint-Dizier

This study was designed to evaluate the effects of oviductal fluid at different periovulatory times on oocyte maturation, modification of the zona pellucida (ZP), fertilization and embryo development. Bovine oviducts were collected at a slaughterhouse and classified as preovulatory (pre-ov: 1 pre-ov follicle and a regressing corpus luteum) or post-ovulatory (post-ov: a corpus haemorrhagicum or recent corpus luteum; n = 10 cows/stage). Both oviducts were flushed with 1 mL of sterile TCM-199, and oviductal flushes (OF) were aliquoted and stored at –80°C. Abattoir-derived bovine ovaries were aspirated and cumulus‐oocyte complexes (COC) with at least 3 cumulus layers and homogeneous oocyte cytoplasm were in vitro matured for 22 h in standard maturation medium (control group, n = 319) or in standard medium with 2× concentrated additives supplemented (50% v/v) with pre-ov OF (n = 255) or post-ov OF (n = 248). After in vitro maturation (IVM), subgroups of COC were denuded, and the time of digestion of the ZP by pronase 0.1% (v/v in TCM-199) was determined to evaluate ZP hardening. After IVM, COC were fertilised in vitro for 18–20 h at a final concentration of 1.106 million spermatozoa (spz)/mL. After in vitro fertilization (IVF), COC were denuded, washed twice and cultured for 8 days more under standard conditions. After IVM, IVF, and embryo culture, oocytes/embryos were fixed with ethanol, stained with Hoescht, and examined under fluorescence microscopy for determination of (1) maturation and developmental stages, (2) numbers of fertilised and polyspermic oocytes, and (3) spz bound to the ZP. Percentages were compared between groups by chi-square. Times of ZP digestion were compared by Kruskal‐Wallis test. Numbers of spz bound to the ZP were compared by ANOVA on normalised data followed by Newman-Keuls tests. Data are presented as mean ± SEM. A P < 0.05 was considered significant. Addition of OF during IVM had no effect on maturation rates compared with the control. However, the digestion time of the ZP by pronase was reduced after IVM with pre-ov OF (313 ± 21 s; n = 26) compared with post-ov OF (459 ± 23 s; n = 23) but not with the control (416 ± 30 s; n = 25). After IVF, the number of spermatozoa bound to the ZP was increased after IVM with pre-ov OF (57 ± 5 spz/oocyte; n = 67) and decreased after IVM with post-ov OF (34 ± 3 spz/oocyte; n = 76) compared with the control (42 ± 5 spz/oocyte; n = 60). Addition of OF during IVM had no effect on rates of IVF and polyspermia. However, the rate of development to the blastocyst stage was less after IVM with post-ov OF (10%, n = 97 cleaved oocytes) compared with control (24%, n = 130) and pre-ov OF (29%, n = 101). In conclusion, the OF collected before ovulation decreased the resistance of the ZP to protease digestion and increased its ability to bind spz, whereas it was the opposite for the post-ov OF. Furthermore, the post-ov OF decreased the developmental competence of fertilised oocytes.


2009 ◽  
Vol 21 (1) ◽  
pp. 156
Author(s):  
E. Dovolou ◽  
M. Clemente ◽  
G. S. Amiridis ◽  
I. Messinis ◽  
A. Kalitsaris ◽  
...  

We have previously shown that follicular and oviductal fluid provide greater total protection against lipid peroxidation than the respective media used for the in vitro embryo production. Reactive oxygen species (ROS) production has been implicated as a major cause for the reduced in vitro bovine embryo production; it is believed that they participate in meiotic arrest of oocytes, embryonic block and cell death. The aim of this study was to determine whether guaiazulene (G), an exogenous antioxidant, added in the post fertilization culture medium would affect the early embryo development and the quality of the produced blastocysts in terms of mRNA expression of several important genes. In a previous study we had shown that media modified with 0.01 mm of G provided the same antioxidant protection as the respective in vivo environments (i.e. the follicular and the oviductal fluid). Bovine cumulus–oocyte complexes (COC) were aspirated from ovaries derived from slaughtered cows and matured in groups of 50 in 500 μL in TCM199 with 10% fetal calf serum and 10 ng mL–1 Epidermal Growth factor at 39°C in an atmosphere of 5% CO2 in air and maximum humidity. Twenty-four hours later matured oocytes were inseminated with frozen/thawed bull semen and co-incubated in the same conditions as maturation. Presumptive zygotes were divided into 4 groups and cultured in groups of 25 in 25 μL of SOF with 5% FCS (Control–, n = 355), supplemented with 0.01 mm of G (n = 344) or 0.1 mm of G (n = 345) or 0.05% DMSO – the G diluent–(Control+, n = 347) at 39°C in an atmosphere of 5% CO2, 5% O2 and maximum humidity. Blastocyst yield was recorded on Days 6, 7, 8 and 9; Day 7 blastocysts from each group were snap frozen and stored at –80°C for mRNA extraction. Quantification of transcripts for aldose reductase mRNA (AKRIBI), prostaglandin G/H synthase-2 (PGHS-2, COX-2), glyceraldehyde 3-phosphate dehydrogenase (GADPH), facilitated glucose/fructose transporter, member 5 (GLUT-5) genes related to metabolism, glutathione peroxidase 1 (GPX1), glucose-6-phosphate dehydrogenase (G6PD) antioxidant enzymes and placenta-specific 8 (PLAC8) related to implantation was carried out by real-time quantitative RT-PCR. Data for embryo development and on transcript abundance were analyzed by chi square and ANOVA, respectively. Cleavage rate tended to be higher in 0.01 mm group than in Control– (77.87% v. 71.41%, P = 0.07). Barring that, no other differences were detected in cleavage rate (Control+: 71.32%; 0.1 mm: 72.75%) or in the overall blastocyst yield on Day 9 (Control–: 25.50%; Control+: 26.71%; 0.1 mm: 25.75%; 0.01 mm: 29.58%). The relative abundance of genes studied varied among groups, but these differences were not significant. We infer that under the current culture conditions, G as an antioxidant has no serious direct effect on early embryo development or on embryo quality at least on the mRNA transcripts studied. Further studies using the same antioxidant in different atmospheric conditions are planed. ED and GSA were sponsored by COST (FAO702) and OECD fellowships, respectively.


Sign in / Sign up

Export Citation Format

Share Document