scholarly journals Defining Signatures of Arm-Wise Copy Number Change and Their Associated Drivers in Kidney Cancers

2019 ◽  
Vol 20 (22) ◽  
pp. 5762
Author(s):  
Graeme Benstead-Hume ◽  
Sarah K. Wooller ◽  
Jessica A Downs ◽  
Frances M. G. Pearl

Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns in copy number alterations in cancer cells vary both by tissue type and as a function of genetic alteration. We find that patterns in both chromosomal ploidy and individual arm copy number are dependent on tumour type. We highlight for example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell carcinoma tissue samples. We find that specific gene mutations are associated with genome-wide copy number changes. Using signatures derived from non-negative factorisation, we also find gene mutations that are associated with particular patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we successfully predicted the presence of mutated genes in a sample using arm-wise copy number patterns as features. This demonstrates that mutations in specific genes are correlated and may lead to specific patterns of ploidy loss and gain across chromosome arms. Using these same classifiers, we highlight which arms are most predictive of commonly mutated genes in kidney renal clear cell carcinoma (KIRC).

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kang Yang ◽  
Xiao-fan Lu ◽  
Peng-cheng Luo ◽  
Jie Zhang

Background. Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma (RCC), usually is representative of metastatic heterogeneous neoplasm that links with poor prognosis, but the pathogenesis of ccRCC remains unclear. Currently, numerous evidences prove that long noncoding RNAs (lncRNAs) are considered as competing endogenous RNA (ceRNA) to participate in cellular processes of tumors. Therefore, to investigate the underlying mechanisms of ccRCC, the expression profiles of lncRNAs, miRNAs, and mRNAs were downloaded from the Cancer Genome Atlas (TCGA) database. A total of 1526 differentially expressed lncRNAs (DElncRNAs), 54 DEmiRNAs, and 2352 DEmRNAs were identified. To determine the connection of them, all DElncRNAs were input to the miRcode database. The results indicated that 85 DElncRNAs could connect with 9 DEmiRNAs in relation to our study. Then, databases of TargetScan and miRDB were used to search for targeted genes with reference to DEmiRNAs. The results showed that 203 out of 2352 targeted genes were identified in our TCGA set. Subsequently, ceRNA network was constructed according to Cytoscape and the targeted genes were functionally analyzed to elucidate the mechanisms of DEmRNAs. The results of survival analysis and regression analysis indicated that 6 DElncRNAs named COL18A1-AS1, WT1-AS, LINC00443, TCL6, AL356356.1, and SLC25A5-AS1 were significantly correlative with the clinical traits of ccRCC patients and could be served as predictors for ccRCC. Finally, these findings were validated by quantitative RT-PCR (qRT-PCR). Based on these discoveries, we believe that this identified ceRNA network will provide a novel perspective to elucidate ccRCC pathogenesis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qianwei Xing ◽  
Tengyue Zeng ◽  
Shouyong Liu ◽  
Hong Cheng ◽  
Limin Ma ◽  
...  

Abstract Background The role of glycolysis in tumorigenesis has received increasing attention and multiple glycolysis-related genes (GRGs) have been proven to be associated with tumor metastasis. Hence, we aimed to construct a prognostic signature based on GRGs for clear cell renal cell carcinoma (ccRCC) and to explore its relationships with immune infiltration. Methods Clinical information and RNA-sequencing data of ccRCC were obtained from The Cancer Genome Atlas (TCGA) and ArrayExpress datasets. Key GRGs were finally selected through univariate COX, LASSO and multivariate COX regression analyses. External and internal verifications were further carried out to verify our established signature. Results Finally, 10 GRGs including ANKZF1, CD44, CHST6, HS6ST2, IDUA, KIF20A, NDST3, PLOD2, VCAN, FBP1 were selected out and utilized to establish a novel signature. Compared with the low-risk group, ccRCC patients in high-risk groups showed a lower overall survival (OS) rate (P = 5.548Ee-13) and its AUCs based on our established signature were all above 0.70. Univariate/multivariate Cox regression analyses further proved that this signature could serve as an independent prognostic factor (all P < 0.05). Moreover, prognostic nomograms were also created to find out the associations between the established signature, clinical factors and OS for ccRCC in both the TCGA and ArrayExpress cohorts. All results remained consistent after external and internal verification. Besides, nine out of 21 tumor-infiltrating immune cells (TIICs) were highly related to high- and low- risk ccRCC patients stratified by our established signature. Conclusions A novel signature based on 10 prognostic GRGs was successfully established and verified externally and internally for predicting OS of ccRCC, helping clinicians better and more intuitively predict patients’ survival.


2020 ◽  
Vol 10 ◽  
Author(s):  
Xiang Ju ◽  
Yangyang Sun ◽  
Feng Zhang ◽  
Xiaohui Wei ◽  
Zhenguo Wang ◽  
...  

With the rapid development of biotechnology, long noncoding RNAs (lncRNAs) have exhibited good application prospects in the treatment of cancer, and they may become new treatment targets for cancer. This study aimed to explore lncRNAs in clear cell renal cell carcinoma (ccRCC). Differentially expressed lncRNAs in 54 pairs of ccRCC tissues and para-carcinoma tissues were analyzed in The Cancer Genome Atlas (TCGA), and the most significant lncRNAs were selected and verified in ccRCC tissues. We found that lncRNA LINC02747 was highly expressed in ccRCC (P &lt; 0.001) and was closely related to high TNM stage (P = 0.006) and histological grade (P = 0.004) and poor prognosis of patients (P &lt; 0.001). In vivo and in vitro experiments confirmed that LINC02747 could promote the proliferation of ccRCC cells. We also found that LINC02747 regulated the proliferation of RCC cells by adsorbing miR-608. Subsequent mechanistic research showed that miR-608 is downregulated in ccRCC (P &lt; 0.001), and overexpression of miR-608 inbibited the proliferation of RCC cells. Moreover, we found that TFE3 is a direct target gene of miR-608. MiR-608 regulated the proliferation of RCC cells by inhibiting TFE3. In conclusion, LINC02747 upregulates the expression of TFE3 by adsorbing miR-608, ultimately promoting the proliferation of ccRCC cells. The above findings indicate that LINC02747 acts as an oncogene in ccRCC and may be developed as a molecular marker for the diagnosis and prognosis of ccRCC. The LINC02747/miR-608/TFE3 pathway may become a new therapeutic target for ccRCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanxin Liu ◽  
Zichun Wang ◽  
Xiaoxiong Wang ◽  
Meisong Lu ◽  
Guang Chen

Several studies have indicated that HOXA transcript at the distal tip (HOTTIP) play important roles in the tumorigenesis and development of various cancers. We aim to investigate the expression and prognostic value of HOTTIP in clear cell renal cell carcinoma (ccRCC). A systematic review of PubMed, Embase, Medline, and Web of Science databases was performed to select eligible literatures relevant to the correlation between HOTTIP expression and clinical outcome of different cancers. The association between the HOTTIP level and overall survival (OS), lymph node metastasis (LNM), or clinical stage was subsequently analyzed. Survival analyses were performed in a large cohort of more than 500 patients with ccRCC from The Cancer Genome Atlas (TCGA) using bioinformatic methods. Seventeen studies with a total of 1594 patients with thirteen kinds of carcinomas were included in this analysis. The result showed that high HOTTIP expression could predict worse outcome in cancer patients, with the pooled hazard ratio (HR) of 2.34 (95% confidence interval (CI) 1.96–2.79, p<0.0001). The result also showed that elevated HOTTIP expression was correlated with more LNM (OR=2.61, 95% CI 1.91-3.58, p<0.0001) and advanced clinical stage (OR=3.57, 95% CI 2.58-4.93, p<0.0001). We further validated that ccRCC patients with higher HOTTIP expression tend to have unsatisfactory outcomes both in the entire TCGA dataset and different clinical stratums, like age, grade, and stage. The tumor of those patients was associated with a larger size, easier to metastasis, advanced clinical stage, and a higher pathological grade. These findings suggested that increased HOTTIP expression might act as a novel prognostic marker for ccRCC patients.


BMC Urology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jeanette E. Eckel-Passow ◽  
Huihuang Yan ◽  
Matthew L. Kosel ◽  
Daniel Serie ◽  
Paul A. Decker ◽  
...  

Abstract Background The four most commonly-mutated genes in clear cell renal cell carcinoma (ccRCC) tumors are BAP1, PBRM1, SETD2 and VHL. And, there are currently 14 known RCC germline variants that have been reproducibly shown to be associated with RCC risk. However, the association of germline genetics with tumor genetics and clinical aggressiveness are unknown. Methods We analyzed 420 ccRCC patients from The Cancer Genome Atlas. Molecular subtype was determined based on acquired mutations in BAP1, PBRM1, SETD2 and VHL. Aggressive subtype was defined clinically using Mayo SSIGN score and molecularly using the ccA/ccB gene expression subtype. Publically-available Hi-C data were used to link germline risk variants with candidate target genes. Results The 8q24 variant rs35252396 was significantly associated with VHL mutation status (OR = 1.6, p = 0.0037) and SSIGN score (OR = 1.9, p = 0.00094), after adjusting for multiple comparisons. We observed that, while some germline variants have interactions with nearby genes, some variants demonstrate long-range interactions with target genes. Conclusions These data further demonstrate the link between rs35252396, HIF pathway and ccRCC clinical aggressiveness, providing a more comprehensive picture of how germline genetics and tumor genetics interact with respect to tumor development and progression.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Quan Hong ◽  
Shuqiang Wang ◽  
Shuxin Liu ◽  
Xiangmei Chen ◽  
Guangyan Cai

Clear cell renal cell carcinoma (ccRCC) accounts for 60-70% of renal cell carcinoma (RCC) cases. It is an urgent mission to find more therapeutic targets for advanced ccRCC. Leucine-rich a-2-glycoprotein 1 (LRG1) is a secreted protein associated with a variety of malignancies. Our study focused on the expression and mechanism of LRG1 in ccRCC based on data from The Cancer Genome Atlas (TCGA) and provided primary verification including LRG1 expression detection, LRG1 gene methylation detection, and downstream signaling detection. We found that LRG1 was overexpressed in ccRCC kidney tissue samples, and the methylation level of LRG1 gene was significantly decreased in ccRCC. Moreover, the expression of LRG1 was negatively related to patient survival. Based on our previous study and the verification reported in this article, we propose that demethylation-induced overexpression of LRG1 is likely to accelerate ccRCC progression via the TGF-β pathway.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 428-428
Author(s):  
Banumathy Gowrishankar ◽  
Venkata Jaganmohan Thodima ◽  
Ana M. Molina ◽  
Charles Ma ◽  
Asha Guttapalli ◽  
...  

428 Background: About one-third of patients with clear cell renal cell carcinoma (ccRCC) exhibit metastasis at the time of diagnosis and show poor prognosis. The genetic and epigenetic alterations associated with metastasis in ccRCC have variably been studied, and their role in the metastatic process is unclear. The goals of the current study were to identify genomic copy number alterations (CNAs) associated with ccRCC metastasis and examine their clinical utility. Methods: In this IRB-approved study, genome-wide copy number profiling was performed on DNA from 144 ccRCC (81 primary and 63 metastatic lesions). Differential CNAs between primary and metastatic lesions and between different metastatic sites were identified using Fisher’s exact test. Associations between CNAs and overall survival (OS) were tested using the log rank statistic and Kaplan-Meier method. Genomic profiling data of 437 and 240 primary ccRCC (TCGA and PMID: 23797736, respecitively) were used for verification. Results: Between primary and metastatic lesions, 25 CNAs were significantly different (p<0.05). Of the 11 more frequent in metastatic lesions, nine retained significance when comparing stage IV and stage I TCGA ccRCC. For 368 TCGA locally-invasive tumors (stages I, II, and III), three CNAs (loss of 9p24.3-p13.3, 9p12-q11, and 9q21.12-q21.33) were associated with inferior survival (p=0.002). In the second dataset of 214 locally-invasive lesions, loss of 18q11.2-q23 correlated with shorter OS (p=0.025). Across metastatic lesions, nine CNAs were found to be significantly enriched in lung lesions and three in bone. In a subset of 127 ccRCC with known metastatic status at 5 years after diagnosis, two of these CNAs (gain of 7q36.1-36.3 in lung and loss of 22q13.2 in bone) were significantly enriched in the corresponding primary specimens. Conclusions: This study identified CNAs associated with ccRCC metastasis and common sites of metastasis that have the potential to serve as biomarkers to assist in better risk stratification of patients with this disease. Integrated analyses of genes mapping to the loci of genomic imbalance would further our understanding of the biology of metastasis in renal cancer.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 406-406
Author(s):  
Samuel D. Kaffenberger ◽  
Giovanni Ciriello ◽  
Andrew G. Winer ◽  
Martin Henner Voss ◽  
Jodi Kathleen Maranchie ◽  
...  

406 Background: Proteomics represents the ultimate convergence of DNA and expression alterations. We therefore sought to leverage TCGA reverse phase protein array (RPPA) data with an independent proteomic platform to identify druggable targets and pathways associated with prognosis in clear cell renal cell carcinoma (ccRCC). Methods: Unsupervised hierarchical consensus clustering was performed and differentially expressed proteins were identified for pathway analysis. Associations with clinicogenomic factors were assessed and Cox proportional hazards models were performed for disease-specific survival (DSS). Results: RPPA clustering of 324 patients from the ccRCC TCGA revealed 5 robust clusters characterized by alterations in specific pathways and divergent prognoses. Cluster 1 was characterized by poor DSS, decreased expression of receptor tyrosine kinases (RTK) and upregulation of the mTOR pathway. It was also associated with mTOR pathway genomic alterations, sarcomatoid histology and the ccb prognostic mRNA signature (all p<0.001). Cluster 2 was characterized by increased expression of RTKs and interestingly, had upregulation of the mTOR pathway with excellent DSS. After accounting for stage and grade, cluster designation remained independently associated with DSS (HR 0.23 for cluster 2, 95% CI 0.08-0.68; p=0.008). External validation was performed on a separate cohort of 189 patients with a different quantitative proteomics platform. A panel of phosphoproteins (pHER1, pHER2, pHER3, pSHC, pMEK, pAKT), highly discriminant between the most divergent RPPA clusters (1 and 2) was evaluated. Those at the highest quartile of activation in > 3 proteins were associated with improved DSS (HR 0.19, 95% CI 0.05-0.082; p=0.03). Patients with mTOR pathway activation segregated to those with coincident RTK activation (n=83) and those without (n=13). Conclusions: We have identified and validated proteomic signatures which cluster ccRCC patients into 5 prognostic groups. Furthermore, two distinct mTOR-activated clusters—one with high RTK activity and one with increased mTOR pathway genomic alterations were revealed, which may have prognostic and therapeutic implications.


2021 ◽  
Author(s):  
Chunxiu Yang ◽  
Jingjing Pang ◽  
Jian Xu ◽  
He Pan ◽  
Yueying Li ◽  
...  

Abstract Background: Clear cell renal cell carcinoma (ccRCC), derived from renal tubular epithelial cells, is the most common malignant tumor of the kidney. The study of key genes related to the pathogenesis of ccRCC has become important for gene target therapy. Methods: Bioinformatics analysis of The Cancer Genome Atlas (TCGA) and the NCBI Gene Expression Omnibus (GEO) database were performed to examine the expression pattern and prognostic significance of leucine-rich repeat kinase 2 (LRRK2) expression and its relationship to clinical parameters. Immunohistochemistry and Western blot were performed to verify LRRK2 expression.Results: Bioinformatics analysis showed that LRRK2 expression was up-regulated in ccRCC, which was confirmed in ccRCC tissue immunohistochemically and by protein analysis. The level of expression was related to gender, pathological grade, stage and metastatic status of ccRCC patients. Meanwhile, Kaplan-Meier analysis showed that high expression of LRRK2 correlates to a better prognosis; protein-protein interaction network analysis showed that LRRK2 interacts with HIF1A and EGFR.Conclusion: We found that LRRK2 may play an important role in the tumorigenesis and progression of ccRCC. Our findings provided a potential predictor and therapeutic target in ccRCC.


Sign in / Sign up

Export Citation Format

Share Document