scholarly journals Genome-Wide Identification and Characterization of the NAC Transcription Factor Family in Musa Acuminata and Expression Analysis during Fruit Ripening

2020 ◽  
Vol 21 (2) ◽  
pp. 634
Author(s):  
Bin Li ◽  
Ruiyi Fan ◽  
Qiaosong Yang ◽  
Chunhua Hu ◽  
Ou Sheng ◽  
...  

Banana (Musa acuminata, AAA group) is a representative climacteric fruit with essential nutrients and pleasant flavors. Control of its ripening determines both the fruit quality and the shelf life. NAC (NAM, ATAF, CUC2) proteins, as one of the largest superfamilies of transcription factors, play crucial roles in various functions, especially developmental processes. Thus, it is important to conduct a comprehensive identification and characterization of the NAC transcription factor family at the genomic level in M. acuminata. In this article, a total of 181 banana NAC genes were identified. Phylogenetic analysis indicated that NAC genes in M. acuminata, Arabidopsis, and rice were clustered into 18 groups (S1–S18), and MCScanX analysis disclosed that the evolution of MaNAC genes was promoted by segmental duplication events. Expression patterns of NAC genes during banana fruit ripening induced by ethylene were investigated using RNA-Seq data, and 10 MaNAC genes were identified as related to fruit ripening. A subcellular localization assay of selected MaNACs revealed that they were all localized to the nucleus. These results lay a good foundation for the investigation of NAC genes in banana toward the biological functions and evolution.

Genes ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 54 ◽  
Author(s):  
Ruoqiu Wang ◽  
Peng Zhao ◽  
Nana Kong ◽  
Ruize Lu ◽  
Yue Pei ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 2821
Author(s):  
Lixia Zhou ◽  
Rajesh Yarra

The AP2/ERF transcription factor family members play crucial roles in controlling plant growth and development, as well as responses to various abiotic stresses. Genome-wide identification and characterization of AP2/ERF genes has not yet been carried out in the oil palm genome. In the present work, we reported the occurrence of 172 EgAP2/ERFs (AP2, ERF, RAV & Soloist members) through genome-wide identification. Phylogenetic analysis was used to divide them into four groups, including: 34 AP2, 131 ERF, 5 RAV, and 2 Soloist gene family members. All 172 AP2/ERF members were unevenly distributed across 16 chromosomes of oil palm. Gene duplication analysis elucidated the tandem duplication of AP2/ERFs on chromosome blocks of the oil palm genome during evolution. Gene structure as well as conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the AP2/ERF genes. Several cis-regulatory elements—related to hormone, stress, and defense responses—were identified in the promoter regions of AP2/ERFs. Tissue-specific expression of 172 AP2/ERFs in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Finally, abiotic stress (salinity, cold & drought)-responsive AP2/ERFs in the oil palm genome were validated through qPCR analysis. Our study provided valuable information on oil palm AP2/ERF superfamily members and dissected their role in abiotic stress conditions.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cuiling Yuan ◽  
Chunjuan Li ◽  
Xiaodong Lu ◽  
Xiaobo Zhao ◽  
Caixia Yan ◽  
...  

Abstract Background Peanut is one of the most important oil crop species worldwide. NAC transcription factor (TF) genes play important roles in the salt and drought stress responses of plants by activating or repressing target gene expression. However, little is known about NAC genes in peanut. Results We performed a genome-wide characterization of NAC genes from the diploid wild peanut species Arachis duranensis and Arachis ipaensis, which included analyses of chromosomal locations, gene structures, conserved motifs, expression patterns, and cis-acting elements within their promoter regions. In total, 81 and 79 NAC genes were identified from A. duranensis and A. ipaensis genomes. Phylogenetic analysis of peanut NACs along with their Arabidopsis and rice counterparts categorized these proteins into 18 distinct subgroups. Fifty-one orthologous gene pairs were identified, and 46 orthologues were found to be highly syntenic on the chromosomes of both A. duranensis and A. ipaensis. Comparative RNA sequencing (RNA-seq)-based analysis revealed that the expression of 43 NAC genes was up- or downregulated under salt stress and under drought stress. Among these genes, the expression of 17 genes in cultivated peanut (Arachis hypogaea) was up- or downregulated under both stresses. Moreover, quantitative reverse transcription PCR (RT-qPCR)-based analysis revealed that the expression of most of the randomly selected NAC genes tended to be consistent with the comparative RNA-seq results. Conclusion Our results facilitated the functional characterization of peanut NAC genes, and the genes involved in salt and drought stress responses identified in this study could be potential genes for peanut improvement.


2021 ◽  
Author(s):  
Carmen Martín-Pizarro ◽  
José G Vallarino ◽  
Sonia Osorio ◽  
Victoriano Meco ◽  
María Urrutia ◽  
...  

Abstract In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a non-climacteric fruit, is still limited. NAC transcription factors mediate different developmental processes in plants. Here, we identified and characterized FaRIF (Ripening Inducing Factor), a NAC transcription factor that is highly expressed and induced in strawberry receptacles during ripening. Functional analyses based on stable transgenic lines aimed at silencing FaRIF by RNA interference, either from a constitutive promoter or the ripe receptacle-specific EXP2 promoter, as well as overexpression lines showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugar accumulation. Physiological, metabolome and transcriptome analyses of receptacles of FaRIF-silenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling abscisic acid (ABA) biosynthesis and signaling, cell wall degradation and modification, the phenylpropanoid pathway, volatiles production, and the balance of the aerobic/anaerobic metabolism. FaRIF is therefore a target to be modified/edited to control the quality of strawberry fruits.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2721
Author(s):  
Chao Tan ◽  
Huilei Qiao ◽  
Ming Ma ◽  
Xue Wang ◽  
Yunyun Tian ◽  
...  

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor families in plants and plays crucial roles in plant development. Melon is an important horticultural plant as well as an attractive model plant for studying fruit ripening. However, the bHLH gene family of melon has not yet been identified, and its functions in fruit growth and ripening are seldom researched. In this study, 118 bHLH genes were identified in the melon genome. These CmbHLH genes were unevenly distributed on chromosomes 1 to 12, and five CmbHLHs were tandem repeat on chromosomes 4 and 8. There were 13 intron distribution patterns among the CmbHLH genes. Phylogenetic analysis illustrated that these CmbHLHs could be classified into 16 subfamilies. Expression patterns of the CmbHLH genes were studied using transcriptome data. Tissue specific expression of the CmbHLH32 gene was analysed by quantitative RT-PCR. The results showed that the CmbHLH32 gene was highly expressed in female flower and early developmental stage fruit. Transgenic melon lines overexpressing CmbHLH32 were generated, and overexpression of CmbHLH32 resulted in early fruit ripening compared to wild type. The CmbHLH transcription factor family was identified and analysed for the first time in melon, and overexpression of CmbHLH32 affected the ripening time of melon fruit. These findings laid a foundation for further study on the role of bHLH family members in the growth and development of melon.


Sign in / Sign up

Export Citation Format

Share Document