scholarly journals Knockdown of Musashi RNA Binding Proteins Decreases Radioresistance but Enhances Cell Motility and Invasion in Triple-Negative Breast Cancer

2020 ◽  
Vol 21 (6) ◽  
pp. 2169
Author(s):  
Fabian M. Troschel ◽  
Annemarie Minte ◽  
Yahia Mahmoud Ismail ◽  
Amr Kamal ◽  
Mahmoud Salah Abdullah ◽  
...  

The therapeutic potential of Musashi (MSI) RNA-binding proteins, important stemness-associated gene expression regulators, remains insufficiently understood in breast cancer. This study identifies the interplay between MSI protein expression, stem cell characteristics, radioresistance, cell invasiveness and migration. MSI-1, MSI-2 and Notch pathway elements were investigated via quantitative polymerase chain reaction (qPCR) in 19 triple-negative breast cancer samples. Measurements were repeated in MDA-MB-231 cells after MSI-1 and -2 siRNA-mediated double knockdown, with further experiments performed after MSI silencing. Flow cytometry helped quantify expression of CD44 and leukemia inhibitory factor receptor (LIFR), changes in apoptosis and cell cycle progression. Proliferation and irradiation-induced effects were assessed using colony formation assays. Radiation-related proteins were investigated via Western blots. Finally, cell invasion assays and digital holographic microscopy for cell migration were performed. MSI proteins showed strong correlations with Notch pathway elements. MSI knockdown resulted in reduction of stem cell marker expression, cell cycle progression and proliferation, while increasing apoptosis. Cells were radiosensitized as radioresistance-conferring proteins were downregulated. However, MSI-silencing-mediated LIFR downregulation resulted in enhanced cell invasion and migration. We conclude that, while MSI knockdown results in several therapeutically desirable consequences, enhanced invasion and migration need to be counteracted before knockdown advantages can be fully exploited.

2020 ◽  
Vol 19 ◽  
pp. 153303382097752
Author(s):  
Lin Gan ◽  
Huachao Yang ◽  
Zhifeng Xiong ◽  
Zailiang Yang ◽  
Ting Wang ◽  
...  

MicroRNAs (miRNAs) are emerging as critical mediators in tumors, including triple-negative breast cancer (TNBC). The role of miR-518a-3p in TNBC was investigated to identify potential therapeutic target. Data from KM Plotter database ( www.kmplot.com ) showed that high miR-518a-3p expression was significantly associated with overall survival of patients with TNBC ( p = 0.04). The expression of miR-518a-3p was dysregulated in TNBC cells. Functional assays revealed that over-expression of miR-518a-3p inhibited cell invasion and migration of TNBC. Additionally, miR-518a-3p could target TMEM2 (transmembrane protein 2), and decreased protein and mRNA expression of TMEM2 in TNBC cells. Knockdown of TMEM2 suppressed cell invasion and migration through inhibiting phospho (p)-JAK1 (Janus kinase 1) and p-STAT (signal transducer and activator of transcription protein) 1/2. Moreover, over-expression of TMEM2 counteracted the suppressive effect of miR-518a-3p on TNBC invasion and migration through promoting the levels of p-JAK1 and p-STAT1/2. In conclusion, miR-518a-3p negatively regulates the JAK/STAT pathway via targeting TMEM2 and suppresses invasion and migration in TNBC, suggesting that miR-518a-3p may be a potential therapeutic target in TNBC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan Tian ◽  
Jin Wu ◽  
Lingjuan Zeng ◽  
Linxi Zhou ◽  
Ying Hu ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and the targeted therapies are lacking for this type of cancer. We previously demonstrated that Huaier effectively improve 5-year OS and DFS in stage III TNBC patients, and the polysaccharides of Huaier (PS-T) have been identified as the major components of Huaier. However, the mechanisms of anti-tumor action of PS-T is unclear. This study aimed to investigate the effect of PS-T on TNBC cell invasion and migration. Results This study showed that PS-T inhibited cell invasion and migration both in vitro and in vivo by inducing autophagy to suppress epithelial-mesenchymal transition (EMT). Autophagy inhibitor LY294002 or knockdown of ATG5 suppressed the inhibitory effects of PS-T. In addition, as a key transcription factor controlling EMT initiation, Snail was found to be degraded by PS-T induced autophagy. In addition, overexpression of Snail reversed the inhibitory effects of PS-T. Furthermore, it was confirmed that the expression of Snail was inversely correlated with LC3 and associated with poor prognosis using immunohistochemistry and TCGA database analysis, respectively. Conclusions This study demonstrated that PS-T could inhibit EMT in breast cancer cells by inducing autophagy to degrade Snail protein, thus improving the prognosis of TNBC, offering potential treatment alternatives for TNBC patients.


2020 ◽  
Vol 16 ◽  
Author(s):  
Vibhavana Singh ◽  
Rakesh Reddy ◽  
Antarip Sinha ◽  
Venkatesh Marturi ◽  
Shravani Sripathi Panditharadyula ◽  
...  

: Diabetes and breast cancer are pathophysiologically similar and clinically established diseases that co-exist with a wider complex similar molecular signalling and having similar set of risk factors. Insulin plays a pivotal role for invasion and migration of breast cancer cells. Several ethnopharmacological evidences light the concomitant anti-diabetic and anti-cancer activity of medicinal plant and phytochemicals against breast tumor of patients with diabetes. This present article reviewed the findings on medicinal plants and phytochemicals with concomitant anti-diabetic and anti-cancer effects reported in scientific literature to facilitate the development of dual-acting therapies against diabetes and breast cancer. The schematic tabular form of published literatures on medicinal plants (63 plants belongs to 45 families) concluded the dynamics of phytochemicals against diabetes and breast tumor that could be explored further for the discovery of therapies for controlling of breast cancer cell invasion and migration in patient with diabetes.


Oncotarget ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 19455-19466 ◽  
Author(s):  
Zhishuang Li ◽  
Qingyong Meng ◽  
Aifeng Pan ◽  
Xiaojuan Wu ◽  
Jingjing Cui ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 1337 ◽  
Author(s):  
Mariana Zóia ◽  
Fernanda Azevedo ◽  
Lara Vecchi ◽  
Sara Mota ◽  
Vinícius Rodovalho ◽  
...  

Triple-negative breast cancers (TNBCs) are more aggressive than other breast cancer (BC) subtypes and lack effective therapeutic options. Unraveling marker events of TNBCs may provide new directions for development of strategies for targeted TNBC therapy. Herein, we reported that Annexin A1 (AnxA1) and Cathepsin D (CatD) are highly expressed in MDA-MB-231 (TNBC lineage), compared to MCF-10A and MCF-7. Since the proposed concept was that CatD has protumorigenic activity associated with its ability to cleave AnxA1 (generating a 35.5 KDa fragment), we investigated this mechanism more deeply using the inhibitor of CatD, Pepstatin A (PepA). Fourier Transform Infrared (FTIR) spectroscopy demonstrated that PepA inhibits CatD activity by occupying its active site; the OH bond from PepA interacts with a CO bond from carboxylic acids of CatD catalytic aspartate dyad, favoring the deprotonation of Asp33 and consequently inhibiting CatD. Treatment of MDA-MB-231 cells with PepA induced apoptosis and autophagy processes while reducing the proliferation, invasion, and migration. Finally, in silico molecular docking demonstrated that the catalytic inhibition comprises Asp231 protonated and Asp33 deprotonated, proving all functional results obtained. Our findings elucidated critical CatD activity in TNBC cell trough AnxA1 cleavage, indicating the inhibition of CatD as a possible strategy for TNBC treatment.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13086-e13086
Author(s):  
Xiu Chen ◽  
Jinhai Tang

e13086 Background: Obesity is associated with the risk of breast cancer(BCa) incidence and development. However, biological changes in obesity BCa individuals are still uncertain. Nowadays, circCNIH4, one of novel non-coding RNAs, was found to be a non-invasive biomarker in cancers. Methods: We verified the cancer-promoting role of obesity in BCa patients by comparing BMI indexes of 33 BCa and 44 benign tumor patients. Then we cocultured viscera adipose cells(HPA-v) and BCa cells(MCF-7/H and MDA-MB-231/H) to confirm the function of adipocytes on metastasis of BCa cells through wound healing, transwell assays. In vivo experiments were also performed. We analyzed the expression level of circCNIH4 in MCF-7/H, MDA-MB-231/H and different subtypes of BCa cells by quantitative polymerase chain reaction. Simultaneously, we identified inhibited effects of circCNIH4 on metastasis of BCa cells by wound healing, transwell assays and verified the location of circCNIH4 by FISH. Luciferase Assay was used to detect harbored miRNA. Rescue experiments were then applied. Results: We found the BMI of BCa patients(24.37±2.51) was much higher than benign patients(22.97±2.91). Metastasis of BCa cells were obviously promoted after in vitro and in vivo experiments. Then we found the expression of circCNIH4 in MCF-7/H and MDA-MB-231/H were down-regulated 0.71 and 0.52 than that in MCF-7 and MDA-MB-231. Also, circCNIH4 was positively correlated with less aggressive types of BCa cells. Overexpression of circCNIH4 in MDA-MB-231 could suppress cell invasion and migration, while silencing of it in MCF-7 promoted cell invasion and migration. The FISH assay demonstrated that circCNIH4 mainly located in the cytoplasm and might function as a “sponge” for miRNA. MiR-135b functioned as a tumor promoter gene from data of 93 BCa patients (HR = 2.27; 1.01 − 5.12), and it could be captured by circCNIH4 via luciferase and rescued assays. Conclusions: In this study, we revealed that BMI or viscera adipocytes could deteriorate prognosis of BCa and circCNIH4 could be a novel biomarker for non-invasive BCa. In details, circCNIH4 mainly suppressed the adipocyte's pro-metastasis effects on BCa by capturing miR-135b.


Sign in / Sign up

Export Citation Format

Share Document