scholarly journals Genome-Wide Identification of M35 Family Metalloproteases in Rhizoctonia cerealis and Functional Analysis of RcMEP2 as a Virulence Factor during the Fungal Infection to Wheat

2020 ◽  
Vol 21 (8) ◽  
pp. 2984
Author(s):  
Lijun Pan ◽  
Shengxian Wen ◽  
Jinfeng Yu ◽  
Lin Lu ◽  
Xiuliang Zhu ◽  
...  

Rhizoctonia cerealis is the causal pathogen of the devastating disease, sharp eyespot, of the important crop wheat (Triticum aestivum L.). In phytopathogenic fungi, several M36 metalloproteases have been implicated in virulence, but pathogenesis roles of M35 family metalloproteases are largely unknown. Here, we identified four M35 family metalloproteases from R. cerealis genome, designated RcMEP2–RcMEP5, measured their transcriptional profiles, and investigated RcMEP2 function. RcMEP2-RcMEP5 are predicted as secreted metalloproteases since each protein sequence contains a signal peptide and an M35 domain that includes two characteristic motifs HEXXE and GTXDXXYG. Transcription levels of RcMEP2-RcMEP5 markedly elevated during the fungus infection to wheat, among which RcMEP2 expressed with the highest level. Functional dissection indicated that RcMEP2 and its M35 domain could trigger H2O2 rapidly-excessive accumulation, induce cell death, and inhibit expression of host chitinases. This consequently enhanced the susceptibility of wheat to R. cerealis and the predicated signal peptide of RcMEP2 functions required for secretion and cell death-induction. These results demonstrate that RcMEP2 is a virulence factor and that its M35 domain and signal peptide are necessary for the virulence role of RcMEP2. This study facilitates a better understanding of the pathogenesis mechanism of metalloproteases in phytopathogens including R. cerealis.

2021 ◽  
Vol 22 (11) ◽  
pp. 5531
Author(s):  
Lijun Pan ◽  
Shengxian Wen ◽  
Jinfeng Yu ◽  
Lin Lu ◽  
Xiuliang Zhu ◽  
...  

In the original article, there was a mistake in Figure 8 as published [...]


2020 ◽  
Vol 21 (5) ◽  
pp. 1812 ◽  
Author(s):  
Lin Lu ◽  
Yongwei Liu ◽  
Zengyan Zhang

Wheat (Triticum aestivum L.) is an important staple crop. Rhizoctonia cerealis is the causal agent of diseases that are devastating to cereal crops, including wheat. Xylanases play an important role in pathogenic infection, but little is known about xylanases in R. cerealis. Herein, we identified nine xylanase-encoding genes from the R. cerealis genome, named RcXYN1–RcXYN9, examined their expression patterns, and investigated the pathogenicity role of RcXYN1. RcXYN1–RcXYN9 proteins contain two conserved glutamate residues within the active motif in the glycoside hydrolase 10 (GH10) domain. Of them, RcXYN1–RcXYN4 are predicted to be secreted proteins. RcXYN1–RcXYN9 displayed different expression patterns during the infection process of wheat, and RcXYN1, RcXYN2, RcXYN5, and RcXYN9 were expressed highly across all the tested inoculation points. Functional dissection indicated that the RcXYN1 protein was able to induce necrosis/cell-death and H2O2 generation when infiltrated into wheat and Nicotiana benthamiana leaves. Furthermore, application of RcXYN1 protein followed by R. cerealis led to significantly higher levels of the disease in wheat leaves than application of the fungus alone. These results demonstrate that RcXYN1 acts as a pathogenicity factor during R. cerealis infection in wheat. This is the first investigation of xylanase genes in R. cerealis, providing novel insights into the pathogenesis mechanisms of R. cerealis.


2001 ◽  
Vol 50 (6) ◽  
pp. 807-807 ◽  
Author(s):  
J. V. Etheridge ◽  
L. Davey ◽  
D. G. Christian

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1154
Author(s):  
Min Jeong Hong ◽  
Jin-Baek Kim ◽  
Yong Weon Seo ◽  
Dae Yeon Kim

Genes of the F-box family play specific roles in protein degradation by post-translational modification in several biological processes, including flowering, the regulation of circadian rhythms, photomorphogenesis, seed development, leaf senescence, and hormone signaling. F-box genes have not been previously investigated on a genome-wide scale; however, the establishment of the wheat (Triticum aestivum L.) reference genome sequence enabled a genome-based examination of the F-box genes to be conducted in the present study. In total, 1796 F-box genes were detected in the wheat genome and classified into various subgroups based on their functional C-terminal domain. The F-box genes were distributed among 21 chromosomes and most showed high sequence homology with F-box genes located on the homoeologous chromosomes because of allohexaploidy in the wheat genome. Additionally, a synteny analysis of wheat F-box genes was conducted in rice and Brachypodium distachyon. Transcriptome analysis during various wheat developmental stages and expression analysis by quantitative real-time PCR revealed that some F-box genes were specifically expressed in the vegetative and/or seed developmental stages. A genome-based examination and classification of F-box genes provide an opportunity to elucidate the biological functions of F-box genes in wheat.


2019 ◽  
pp. g3.200887.2018 ◽  
Author(s):  
Komudi Singh ◽  
Mid Eum Lee ◽  
Maryam Entezari ◽  
Chan-Hun Jung ◽  
Yeonsoo Kim ◽  
...  

2012 ◽  
Vol 52 (4) ◽  
pp. 421-434 ◽  
Author(s):  
Grzegorz Lemańczyk

AbstractIn the field study period from 2006 to 2010, the incidence and severity of sharp eyespot caused byRhizoctoniawere recorded on 36 cultivars of triticale at the milk ripe growth stage. Four localities in north-central Poland were included: Chrząstowo, Dębina, Kończewice and Minikowo. The susceptibility of the seedlings of 30 cultivars of triticale toR. cerealis(AG-D subgroup I) andR. solani(AG-5) was studied in the laboratory. There was much variation in incidence and severity of sharp eyespot between years and locations. The disease was most intense at Chrząstowo. At this location, the mean percentage of diseased stems on 28 cultivars was 2.6-35.7 (-55.0), and the mean disease index was 0.7-15.6 (-24.5), with the lowest and highest values in 2008 and 2009, respectively. At Minikowo, the disease was least intense. At this location, the mean percentage of diseased stems on 23 cultivars was 1.0-4.6 (-18.0), and the mean disease index was 0.3-1.4 (-6.3), with the lowest and highest values in 2006 and 2007, respectively. The cultivars with least intense disease were Tulus and Atletico (Chrząstowo), Grenado and Zorro (Dębina), Krakowiak and Tornado (Kończewice), and Woltario and Constans (Minikowo). The cultivars with most intense disease were Alekto (Chrząstowo), Baltiko (Dębina), Pawo (Kończewice) and Borwo (Minikowo). MostlyR. cerealiswas isolated from the diseased stems;R. solaniwas isolated only sporadically. There was a wide variation in the susceptibility of triticale cultivars toRhizoctonia. Most triticale seedlings inoculated withR. cerealisproduced symptoms typical of sharp eyespot. Seedlings inoculated withR. solaniformed extended lesions with no defined borders. Most symptoms developed on coleoptiles, with less symptoms on the leaves and the least on the roots. There was much variation in susceptibility of triticale cultivars to bothRhizoctoniaspecies. Cultivars were grouped into six categories according to the intensity of seedling infection. Categories 1, 2 and 3, representing low, moderate and high susceptibility toR. cerealis, included 17, 10 and 3 cultivars, respectively.Categories 4, 5 and 6, representing low, moderate and high susceptibility toR. solani, included 3, 12 and 15 cultivars, respectively.Cultivars Baltiko and Zorro had low, and cv. Cultivo had high susceptibility to bothRhizoctoniaspecies. No cultivar was resistant toRhizoctonia. There was a positive correlation between infection byR. cerealisandR. solani.Infection of coleoptiles byR. cerealisorR. solaniwas significantly correlated with infection of leaves. No correlation between intensity of sharp eyespot on triticale plants in the field and on seedlings in controlled conditions was found.


1982 ◽  
Vol 99 (2) ◽  
pp. 461-464 ◽  
Author(s):  
C. A. Gilligan

It has long been known that the size and shape of sampling units used to assess crop yield may have significant effects upon the precision of the estimates (Smith, 1938; Hudson, 1939) but little is known about the effects when estimating incidence of disease. Gilligan (1980) showed that estimates of the incidence (i.e. presence or absence of disease) of stem canker (Phomx, lingam, perfect state Lepto sphaeria maculans)of oil-seed rape were more precise when large square sampling units rather than long rectangular units of similar area or small square sampling units were used. Moreover, estimates derived from the frequently used method of sampling by removal of 25 stems, supposedly at random from each plot, were shown to be biased.


Sign in / Sign up

Export Citation Format

Share Document