scholarly journals Safeguarding Female Reproductive Health Against Endocrine Disrupting Chemicals—The FREIA Project

2020 ◽  
Vol 21 (9) ◽  
pp. 3215
Author(s):  
Majorie B. M. van Duursen ◽  
Julie Boberg ◽  
Sofie Christiansen ◽  
Lisa Connolly ◽  
Pauliina Damdimopoulou ◽  
...  

Currently available test methods are not well-suited for the identification of chemicals that disturb hormonal processes involved in female reproductive development and function. This renders women’s reproductive health at increasing risk globally, which, coupled with increasing incidence rates of reproductive disorders, is of great concern. A woman’s reproductive health is largely established during embryonic and fetal development and subsequently matures during puberty. The endocrine system influences development, maturation, and function of the female reproductive system, thereby making appropriate hormone levels imperative for correct functioning of reproductive processes. It is concerning that the effects of human-made chemicals on the endocrine system and female reproductive health are poorly addressed in regulatory chemical safety assessment, partly because adequate test methods are lacking. Our EU-funded project FREIA aims to address this need by increasing understanding of how endocrine disrupting chemicals (EDCs) can impact female reproductive health. We will use this information to provide better test methods that enable fit-for-purpose chemical regulation and then share our knowledge, promote a sustainable society, and improve the reproductive health of women globally.

2018 ◽  
Vol 97 (3) ◽  
pp. 197-203
Author(s):  
Oksana O. Sinitsyna ◽  
Yu. A. Rakhmanin ◽  
Z. I. Zholdakova ◽  
M. G. Aksenova ◽  
A. V. Kirillov ◽  
...  

The literature review has shown the problem of endocrine disrupting chemicals (EDC) to be associated with their wide distribution in the environment, the abundance, and variety of the chemical structure. Three leading mechanisms of EDCs action are identified as follows: imitation of the naturally occurring hormones action, blocking of receptors within the target cells of hormones, the impact of their kinetics in the body. Epidemiological studies indicate an increase in diseases caused by a disorder of the hormonal system. They are associated with the effect of EDCs. Substances that are completely dissimilar in chemical structure can cause the same effects. According to WHO [6], it is impossible, based on the chemical structure, to determine whether a substance is a disruptor of the endocrine system. However, some structural features determine the estrogenic, thyreogenic and glucocorticoid activity of chemicals. Hence, the need to differentiate the specific (primary) effect of a chemical substance on the endocrine system and the indirect (secondary) effect on it via other mechanisms comes to the fore. In own research, specific mechanisms were shown to be determined in the experiment when studying the complexity of effects, taking into account the processes of adaptation and decompensation, and identifying the effects manifested with the lowest doses. One of the methodological approaches can be the developed “structure-biotransformation-activity” prediction system aimed at revealing the primary types of effects: using quantum-chemical calculations and the plausible reasoning class (called the JSM-reasoning in honour of John Stuart Mill) logico-combinatorial method, it was possible to identify structural fragments of substances responsible for the manifestation of carcinogenic, allergenic effects, methemoglobin formation, etc. The results of clinical studies show the use of pharmacological drugs as models for in vivo study of the effects of EDC to allow not only studying atypical mechanisms of the impact of EDCs from the point of view of molecular genetics but also to predict the individual susceptibility to them taking into account polymorphism of candidate genes. The EDCs problem poses the need for a complex of interdisciplinary research, including three main relationships: exposure assessment-biomonitoring data-the prevalence of endocrine-dependent diseases, taking into account the qualitative and quantitative contribution of individual endocrine disrupters to the development of an ecologically dependent endocrine pathology using molecular genetic methods.


2016 ◽  
Vol 10 (1) ◽  
pp. 54-75 ◽  
Author(s):  
Aparna Mahakali Zama ◽  
Arpita Bhurke ◽  
Mehmet Uzumcu

Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.


2020 ◽  
Vol 21 (6) ◽  
pp. 1929 ◽  
Author(s):  
Andressa Gonsioroski ◽  
Vasiliki E. Mourikes ◽  
Jodi A. Flaws

Anthropogenic contaminants in water can impose risks to reproductive health. Most of these compounds are known to be endocrine disrupting chemicals (EDCs). EDCs can impact the endocrine system and subsequently impair the development and fertility of non-human animals and humans. The source of chemical contamination in water is diverse, originating from byproducts formed during water disinfection processes, release from industry and livestock activity, or therapeutic drugs released into sewage. This review discusses the occurrence of EDCs in water such as disinfection byproducts, fluorinated compounds, bisphenol A, phthalates, pesticides, and estrogens, and it outlines their adverse reproductive effects in non-human animals and humans.


2021 ◽  
Vol 22 (2) ◽  
pp. 933
Author(s):  
Maria E. Street ◽  
Karine Audouze ◽  
Juliette Legler ◽  
Hideko Sone ◽  
Paola Palanza

Endocrine disrupting chemicals (EDCs) are exogenous chemicals which can disrupt any action of the endocrine system, and are an important class of substances which play a role in the Developmental Origins of Health and Disease (DOHaD) [...]


Author(s):  
Hanna Katarina Lilith Johansson ◽  
Camilla Taxvig ◽  
Gustav Peder Mohr Olsen ◽  
Terje Svingen

Abstract Early ovary development is considered to be largely hormone independent, yet there are associations between fetal exposure to endocrine disrupting chemicals and reproductive disorders in women. This can potentially be explained by perturbations to establishment of ovarian endocrine function rather than interference with an already established hormone system. In this study we explore if Hedgehog (HH) signaling, a central pathway for correct ovary development, can be disrupted by exposure to HH-disrupting chemicals, using the antifungal itraconazole as model compound. In the mouse Leydig cell line TM3, used as a proxy for ovarian theca cells, itraconazole exposure had a suppressing effect on genes downstream of HH signaling, such as Gli1. Exposing explanted rat ovaries (gestational day 22 or postnatal day 3) to 30 µM itraconazole for 72 h induced significant suppression of genes in the HH signaling pathway with altered Ihh, Gli1, Ptch1, and Smo expression similar to those previously observed in Ihh/Dhh knock-out mice. Exposing rat dams to 50 mg/kg bw/day in the perinatal period did not induce observable changes in the offspring’s ovaries. Overall, our results suggest that HH signal disruptors may affect ovary development with potential long-term consequences for female reproductive health. However, potent HH inhibitors would likely cause severe teratogenic effects at doses lower than those causing ovarian dysgenesis, so the concern with respect to reproductive disorder is for the presence of HH disruptors at low concentration in combination with other ovary or endocrine disrupting compounds.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wiwat Rodprasert ◽  
Jorma Toppari ◽  
Helena E. Virtanen

Male reproductive health has declined as indicated by increasing rates of cryptorchidism, i.e., undescended testis, poor semen quality, low serum testosterone level, and testicular cancer. Exposure to endocrine disrupting chemicals (EDCs) has been proposed to have a role in this finding. In utero exposure to antiandrogenic EDCs, particularly at a sensitive period of fetal testicular development, the so-called ‘masculinization programming window (MPW)’, can disturb testicular development and function. Low androgen effect during the MPW can cause both short- and long-term reproductive disorders. A concurrent exposure to EDCs may also affect testicular function or damage testicular cells. Evidence from animal studies supports the role of endocrine disrupting chemicals in development of male reproductive disorders. However, evidence from epidemiological studies is relatively mixed. In this article, we review the current literature that evaluated relationship between prenatal EDC exposures and anogenital distance, cryptorchidism, and congenital penile abnormality called hypospadias. We review also studies on the association between early life and postnatal EDC exposure and semen quality, hypothalamic-pituitary-gonadal axis hormone levels and testicular cancer.


2001 ◽  
Vol 14 (1) ◽  
pp. 59-64
Author(s):  
R. Yoshiyuki Osamura ◽  
Toshiki Iwasaka ◽  
Shinobu Umemura

Sign in / Sign up

Export Citation Format

Share Document