scholarly journals The Role of Pref-1 during Adipogenic Differentiation: An Overview of Suggested Mechanisms

2020 ◽  
Vol 21 (11) ◽  
pp. 4104
Author(s):  
Carina da Silva ◽  
Chrisna Durandt ◽  
Karlien Kallmeyer ◽  
Melvin A. Ambele ◽  
Michael S. Pepper

Obesity contributes significantly to the global health burden. A better understanding of adipogenesis, the process of fat formation, may lead to the discovery of novel treatment strategies. However, it is of concern that the regulation of adipocyte differentiation has predominantly been studied using the murine 3T3-L1 preadipocyte cell line and murine experimental animal models. Translation of these findings to the human setting requires confirmation using experimental models of human origin. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is an attractive model to study adipogenesis in vitro. Differences in the ability of MSCs isolated from different sources to undergo adipogenic differentiation, may be useful in investigating elements responsible for regulating adipogenic differentiation potential. Genes involved may be divided into three broad categories: early, intermediate and late-stage regulators. Preadipocyte factor-1 (Pref-1) is an early negative regulator of adipogenic differentiation. In this review, we briefly discuss the adipogenic differentiation potential of MSCs derived from two different sources, namely adipose-derived stromal/stem cells (ASCs) and Wharton’s Jelly derived stromal/stem cells (WJSCs). We then discuss the function and suggested mechanisms of action of Pref-1 in regulating adipogenesis, as well as current findings regarding Pref-1’s role in human adipogenesis.

2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Melissa D. Mercado-Rubio ◽  
Erick Pérez-Argueta ◽  
Alejandro Zepeda-Pedreguera ◽  
Fernando J. Aguilar-Ayala ◽  
Ricardo Peñaloza-Cuevas ◽  
...  

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
C. Durandt ◽  
C. Dessels ◽  
C. da Silva ◽  
C. Murdoch ◽  
M. S. Pepper

Abstract Multipotent adipose-derived stromal/stem cells (ASCs) are candidates for use in cellular therapies for the treatment of a variety of conditions/diseases. Ex vivo expansion of freshly isolated ASCs may be necessary prior to clinical application to ensure that clinically relevant cell numbers are administered during treatment. In addition, cryopreserving cells at early passages allows for storage of freshly isolated cells for extended periods of time before expanding these cells for clinical usage. There are however several concerns that these laboratory-based procedures may alter the characteristics of the cells and in so doing decrease their regenerative potential. In this study we report on the impact of early rounds of cryopreservation (P0) and ex vivo expansion (P0 to P5) on the phenotypic characteristics and adipogenic differentiation potential of ASCs. Our results show that ASCs that upregulate CD36 expression during adipogenic differentiation gradually decrease with increasing expansion rounds. The consequent decrease in adipogenic differentiation capacity was evident in both gene expression and flow cytometry-based phenotypic studies. Successive rounds of expansion did not however alter cell surface marker expression of the cells. We also show that early cryopreservation of ASCs (at P0) does not affect the adipogenic differentiation potential of the cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Monika Marędziak ◽  
Krzysztof Marycz ◽  
Krzysztof A. Tomaszewski ◽  
Katarzyna Kornicka ◽  
Brandon Michael Henry

Tissue regeneration using human adipose derived mesenchymal stem cells (hASCs) has significant potential as a novel treatment for many degenerative bone and joint diseases. Previous studies have established that age negatively affects the proliferation status and the osteogenic and chondrogenic differentiation potential of mesenchymal stem cells. The aim of this study was to assess the age-related maintenance of physiological function and differentiation potential of hASCs in vitro. hASCs were isolated from patients of four different age groups: (1) >20 years (n=7), (2) >50 years (n=7), (3) >60 years (n=7), and (4) >70 years (n=7). The hASCs were characterized according to the number of fibroblasts colony forming unit (CFU-F), proliferation rate, population doubling time (PDT), and quantified parameters of adipogenic, chondrogenic, and osteogenic differentiation. Compared to younger cells, aged hASCs had decreased proliferation rates, decreased chondrogenic and osteogenic potential, and increased senescent features. A shift in favor of adipogenic differentiation with increased age was also observed. As many bone and joint diseases increase in prevalence with age, it is important to consider the negative influence of age on hASCs viability, proliferation status, and multilineage differentiation potential when considering the potential therapeutic applications of hASCs.


2016 ◽  
Vol 398 ◽  
pp. 235-245 ◽  
Author(s):  
Monika Marędziak ◽  
Agnieszka Śmieszek ◽  
Krzysztof A. Tomaszewski ◽  
Daniel Lewandowski ◽  
Krzysztof Marycz

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jamie Mollentze ◽  
Chrisna Durandt ◽  
Michael S. Pepper

The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton’s jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.


2020 ◽  
Author(s):  
Zheng Li ◽  
Xuenan Liu ◽  
Xuejiao Liu ◽  
Yangge Du ◽  
Yuan Zhu ◽  
...  

Abstract BackgroundMitochondrial phosphoenolpyruvate carboxykinase (PCK2) is a rate-limiting enzyme that plays critical roles in multiple physiological processes. We unveiled the important role of PCK2 on the regulation of osteogenesis by mesenchymal stromal/stem cells (MSCs) in our previous work. Here we further investigated the roles of PCK2 on regulating adipogenesis of MSCs and its therapeutic effect on osteoporosis. MethodsWe investigated PCK2 function in adipogenic differentiation of MSCs in vitro through loss-and-gain-of-function experiments. This was followed by heterotopic adipose formation assay in nude mice. In addition, ovariectomized (OVX) and aged mice were used as osteoporotic models to test the effect of PCK2 on osteoporosis. The bone formation and adipocyte accumulation were assessed by micro-CT and histological analysis. The multipotent capacity of control and osteoporotic BMMSCs were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR) and western blot analysis. ResultsPCK2 expression levels were significantly decreased in BMMSCs from OVX and aged mice. Furthermore, PCK2 could inhibit adipogenesis of BMMSCs and thus resisting lipid droplet formation and attenuating bone loss in osteoporotic mice. Mechanistically, we detected that autophagy level was decreased in BMMSCs of osteoporotic mice, while overexpression of PCK2 in vivo could rescued the autophagy activity. We further indicated that PCK2 could reverse osteopenia phenotype and adipose formation in OVX and aged mice partially via autophagy.ConclusionsCollectively, we suggested that PCK2 could attenuate bone loss and adipocyte accumulation of BMMSCs in osteoporotic mice through autophagy dependent manner. Our study indicated that PCK2 could be a brand and effective therapeutic target for osteoporosis treatment.


2019 ◽  
Vol 13 ◽  
pp. 117822341986489
Author(s):  
Niamh O’Halloran ◽  
Sonja Khan ◽  
Katie Gilligan ◽  
Roisin Dwyer ◽  
Michael Kerin ◽  
...  

Adipose tissue engineering using adipose-derived stem cells (ADSCs) has emerged as an opportunity to develop novel approaches to postmastectomy breast reconstruction with the potential for an autologous tissue source with a natural appearance and texture. As of yet, the role of ADSCs in breast cancer development and metastasis is not completely understood; therefore, we must consider the oncological safety of employing an autologous source of ADSCs for use in breast regeneration. This study investigated the regenerative properties of ADSCs isolated from breast cancer patients, including those who had received neoadjuvant chemotherapy, and noncancer controls. The ADSCs were characterised for several parameters central to tissue regeneration, including cell viability, proliferation, differentiation potential, and cytokine secretion. A stem cell population was isolated and confirmed by flow cytometry and multilineage differentiation. There was no difference in cell phenotype or surface antigen expression between ADSCs from different sources. Adipose-derived stem cells isolated from the breast of cancer patients exhibited reduced adipogenic differentiation potential compared with ADSCs from other sources. The greatest degree of adipogenic differentiation was observed in ADSCs isolated from the subcutaneous abdominal fat of noncancer controls. The proliferation rate of ADSCs isolated from the breast of cancer patients was increased compared with other sources; however, it was decreased in ADSCs isolated from breast cancer patients who had recently been treated with neoadjuvant chemotherapy. A number of cytokines were detected in the cell conditioned media of ADSCs from different sources, including matrix metalloproteinase-2 (MMP-2), which was detected at higher levels in the secretome of ADSCs from breast cancer patients compared with noncancer controls. This study provides important information relating to the suitability of ADSCs as an autologous cell source for adipose tissue engineering in postcancer reconstruction. Results indicate that while the surface phenotype does not differ, the differentiation capacity, proliferative rate, and secreted cytokine profile are affected by the presence or treatment of breast cancer. These findings support further investigation into the regenerative potential of these ADSCs, if they are to be considered in clinical reconstructive strategies.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yves Lecarpentier ◽  
Olivier Schussler ◽  
Antonija Sakic ◽  
José Maria Rincon-Garriz ◽  
Priscilla Soulie ◽  
...  

Mesenchymal stromal stem cells (MSC) that reside in the bone marrow (BM) can be amplified in vitro. In 2-dimension (D) cultures, MSC exhibit a morphology similar to fibroblasts, are able to inhibit T lymphocyte and natural killer cell proliferation, and can be differentiated into adipocytes, chondrocytes, or osteoblasts if exposed to specific media. Here we show that medullar MSC cultured in 2D formed an adherent stroma of cells expressing well-organized microfilaments containing α-smooth muscle actin and nonmuscle myosin heavy chain IIA. MSC could be grown in 3D in collagen membranes generating a structure which, upon exposition to 50 mM KCl or to an alternating electric current, developed a contractile strength that averaged 34 and 45 μN/mm2, respectively. Such mechanical tension was similar in intensity and in duration to that of human placenta and was annihilated by isosorbide dinitrate or 2,3-butanedione monoxime. Membranes devoid of MSC did not exhibit a significant contractility. Moreover, MSC nested in collagen membranes were able to control T lymphocyte proliferation, and differentiated into adipocytes, chondrocytes, or osteoblasts. Our observations show that BM-derived MSC cultured in collagen membranes spontaneously differentiate into contractile myofibroblasts exhibiting unexpected properties in terms of cell differentiation potential and of immunomodulatory function.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 430 ◽  
Author(s):  
Sara Al-Ghadban ◽  
Zaidmara T. Diaz ◽  
Hallie J. Singer ◽  
Karya B. Mert ◽  
Bruce A. Bunnell

Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies (p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T (p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A (p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.


Sign in / Sign up

Export Citation Format

Share Document