scholarly journals Extracellular Vesicles-Loaded Fibrin Gel Supports Rapid Neovascularization for Dental Pulp Regeneration

2020 ◽  
Vol 21 (12) ◽  
pp. 4226
Author(s):  
Siyuan Zhang ◽  
Anja Lena Thiebes ◽  
Franziska Kreimendahl ◽  
Stephan Ruetten ◽  
Eva Miriam Buhl ◽  
...  

Rapid vascularization is required for the regeneration of dental pulp due to the spatially restricted tooth environment. Extracellular vesicles (EVs) released from mesenchymal stromal cells show potent proangiogenic effects. Since EVs suffer from rapid clearance and low accumulation in target tissues, an injectable delivery system capable of maintaining a therapeutic dose of EVs over a longer period would be desirable. We fabricated an EV-fibrin gel composite as an in situ forming delivery system. EVs were isolated from dental pulp stem cells (DPSCs). Their effects on cell proliferation and migration were monitored in monolayers and hydrogels. Thereafter, endothelial cells and DPSCs were co-cultured in EV-fibrin gels and angiogenesis as well as collagen deposition were analyzed by two-photon laser microscopy. Our results showed that EVs enhanced cell growth and migration in 2D and 3D cultures. EV-fibrin gels facilitated vascular-like structure formation in less than seven days by increasing the release of VEGF. The EV-fibrin gel promoted the deposition of collagen I, III, and IV, and readily induced apoptosis during the initial stage of angiogenesis. In conclusion, we confirmed that EVs from DPSCs can promote angiogenesis in an injectable hydrogel in vitro, offering a novel and minimally invasive strategy for regenerative endodontic therapy.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Heyun Zhang ◽  
Zhangyu Zheng ◽  
Rongqin Zhang ◽  
Yongcong Yan ◽  
Yaorong Peng ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Diwei Zheng ◽  
Weihai Liu ◽  
Wenlin Xie ◽  
Guanyu Huang ◽  
Qiwei Jiang ◽  
...  

AbstractOsteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Although activator of HSP90 ATPase activity 1 (AHA1) is reported to be a potential oncogene, its role in osteosarcoma progression remains largely unclear. Since metabolism reprogramming is involved in tumorigenesis and cancer metastasis, the relationship between AHA1 and cancer metabolism is unknown. In this study, we found that AHA1 is significantly overexpressed in osteosarcoma and related to the prognosis of osteosarcoma patients. AHA1 promotes the growth and metastasis of osteosarcoma both in vitro and in vivo. Mechanistically, AHA1 upregulates the metabolic activity to meet cellular bioenergetic needs in osteosarcoma. Notably, we identified that isocitrate dehydrogenase 1 (IDH1) is a novel client protein of Hsp90-AHA1. Furthermore, the IDH1 protein level was positively correlated with AHA1 in osteosarcoma. And IDH1 overexpression could partially reverse the effect of AHA1 knockdown on cell growth and migration of osteosarcoma. Moreover, high IDH1 level was also associated with poor prognosis of osteosarcoma patients. This study demonstrates that AHA1 positively regulates IDH1 and metabolic activity to promote osteosarcoma growth and metastasis, which provides novel prognostic biomarkers and promising therapeutic targets for osteosarcoma patients.


2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii3-iii3
Author(s):  
Jiwei Wang ◽  
Emma Rigg ◽  
Taral R Lunavat ◽  
Wenjing Zhou ◽  
Zichao Feng ◽  
...  

Abstract Background Melanoma has the highest propensity of any cancer to metastasize to the brain, with late-stage patients developing brain metastasis (MBM) in 40% of cases. Survival of patients with MBM is around 8 months with current therapies, illustrating the need for new treatments. MBM development is likely caused by molecular interactions between tumor cells and the brain, constituting the brain metastatic niche. miRNAs delivered by exosomes released by the primary tumor cells may play a role in niche establishment, yet the mechanisms are poorly understood. Here, the aim was to identify miRNAs released by exosomes from melanomas, which may be important in niche establishment and MBM progression. Materials and Methods miRNAs from exosomes collected from human astrocytes, melanocytes, and MBM cell lines were profiled to determine differential expression. Functional in vitro validation was performed by cell growth and migration assays, cytokine arrays, qPCR and Western blots. Functional in vivo studies were performed after miR knockdown in MBM cell lines. An in silico docking study was performed to determine drugs that potentially inhibit transcription of miR-146a to impede MBM development. Results miR-146a was the most upregulated miRNA in exosomes from MBM cells and was highly expressed in human and animal MBM samples. miR-146a mimics activated human astrocytes, shown by increased proliferation and migration, elevated expression of GFAP in vitro and in mouse brain tumor samples, and increased cytokine production. In animal studies, knockdown of miR-146a in MBM cells injected intracardially into mice reduced BM burden and increased animal survival. Based on the docking studies, deserpidine was found to be an effective inhibitor of MBM growth in vitro and in vivo. Conclusions MiR-146a may play an important role in MBM development, and deserpidine is a promising candidate for clinical use.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii57-ii57
Author(s):  
J Wang ◽  
E K Rigg ◽  
T R Lunavat ◽  
W Zhou ◽  
Z Feng ◽  
...  

Abstract BACKGROUND Melanoma has the highest propensity of any cancer to metastasize to the brain, with late-stage patients developing brain metastasis (MBM) in 40% of cases. Survival of patients with MBM is around 8 months with current therapies, illustrating the need for new treatments. MBM development is likely caused by molecular interactions between tumor cells and the brain, constituting the brain metastatic niche. miRNAs delivered by exosomes released from the primary tumor cells may play a role in niche establishment, yet the mechanisms are poorly understood. Here, the aim was to identify miRNAs released by exosomes from melanomas, which may be important in niche establishment and MBM progression. MATERIAL AND METHODS miRNAs in exosomes collected from human astrocytes, melanocytes, and MBM cell lines were profiled to determine differential expression. Functional in vitro validation was performed by cell growth and migration assays, cytokine arrays, qPCR and Western blots. Functional in vivo studies were performed after miR knockdown in MBM cell lines. An in silico docking study was performed to determine drugs that potentially inhibit transcription of miR-146a to impede MBM development. RESULTS miR-146a was the most upregulated miRNA in exosomes from MBM cells and was highly expressed in human and animal MBM samples. miR-146a mimics activated human astrocytes, shown by increased proliferation and migration, elevated expression of GFAP in vitro and in mouse brain tumor samples, and increased cytokine production. In animal studies, knockdown of miR-146 in MBM cells injected intracardially into mice reduced BM burden and increased animal survival. Based on the docking studies, deserpidine was found to be an effective inhibitor of MBM growth in vitro and in vivo. CONCLUSION miR-146a may play an important role in MBM development, and deserpidine is a promising candidate for clinical use.


2010 ◽  
Vol 33 (5-6) ◽  
pp. 191-205 ◽  
Author(s):  
S. Marchán ◽  
S. Pérez-Torras ◽  
A. Vidal ◽  
J. Adan ◽  
F. Mitjans ◽  
...  

Background: Pancreatic cancer, the fifth leading cause of adult cancer death in Western countries, lacks early detection, and displays significant dissemination ability. Accumulating evidence shows that integrin-mediated cell attachment to the extracellular matrix induces phenotypes and signaling pathways that regulate tumor cell growth and migration.Methods: In view of these findings, we examined the role ofβ3in pancreatic cancer by generating two stableβ3-expressing pancreatic human cell lines and characterizing their behavior in vitro and in vivo.Results: Transduction ofβ3selectively augmented the functional membraneαvβ3integrin levels, as evident from the enhanced adhesion and migration abilities related to active Rho GTPases. No effects on in vitro anchorage-dependent growth, but higher anoikis were detected inβ3-overexpressing cells. Moreover, tumors expressingβ3displayed reduced growth. Interestingly, treatment of mice with anαv-blocking antibody inhibited the growth ofβ3-expressing tumors to a higher extent.Conclusion: Our results collectively support the hypothesis thatαvβ3integrin has dual actions depending on the cell environment, and provide additional evidence on the role of integrins in pancreatic cancer, which should eventually aid in improving prediction of the effects of therapies addressed to modulate integrin activities in these tumors.


2020 ◽  
Vol 12 ◽  
pp. 175883592093742
Author(s):  
Wen Peng ◽  
Huaqing Zhang ◽  
Shisheng Tan ◽  
Yan Li ◽  
Yang Zhou ◽  
...  

Background: Lysine-specific histone demethylase 1 (LSD1) is a potential target of cancer therapy. In the present study, we aimed to investigate the combined antitumor activity of a novel LSD1 inhibitor (ZY0511) with 5-fluorouracil (5-FU) and elucidate the underlying mechanism in colorectal cancer (CRC). Methods: We evaluated LSD1 expression in CRC tissues from patients who received 5-FU treatment. The synergistic antitumor effect of 5-FU with ZY0511 against human CRC cells was detected both in vitro and in vivo. The underlying mechanism was explored based on mRNA sequencing (mRNA-seq) technology. Results: Overexpression of LSD1 was observed in human CRC tissues, and correlated with CRC development and 5-FU resistance. ZY0511, a novel LSD1 inhibitor, effectively inhibited CRC cells proliferation, both in vitro and in vivo. Notably, the combination of ZY0511 and 5-FU synergistically reduced CRC cells viability and migration in vitro. It also suppressed Wnt/β-catenin signaling and DNA synthesis pathways, which finally induced apoptosis of CRC cells. In addition, the combination of ZY0511 with 5-FU significantly reduced CRC xenograft tumor growth, along with lung and liver metastases in vivo. Conclusions: Our findings identify LSD1 as a potential marker for 5-FU resistance in CRC. ZY0511 is a promising candidate for CRC therapy as it potentiates 5-FU anticancer effects, thereby providing a new combinatorial strategy for treating CRC.


2006 ◽  
Vol 173 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Rong Hou ◽  
Liming Liu ◽  
Syed Anees ◽  
Shungo Hiroyasu ◽  
Nicholas E.S. Sibinga

The significance of cadherin superfamily proteins in vascular smooth muscle cell (VSMC) biology is undefined. Here we describe recent studies of the Fat1 protocadherin. Fat1 expression in VSMCs increases significantly after arterial injury or growth factor stimulation. Fat1 knockdown decreases VSMC migration in vitro, but surprisingly, enhances cyclin D1 expression and proliferation. Despite limited similarity to classical cadherins, the Fat1 intracellular domain (Fat1IC) interacts with β-catenin, inhibiting both its nuclear localization and transcriptional activity. Fat1 undergoes cleavage and Fat1IC species localize to the nucleus; however, inhibition of the cyclin D1 promoter by truncated Fat1IC proteins corresponds to their presence outside the nucleus, which argues against repression of β-catenin–dependent transcription by nuclear Fat1IC. These findings extend recent observations about Fat1 and migration in other cell types, and demonstrate for the first time its anti-proliferative activity and interaction with β-catenin. Because it is induced after arterial injury, Fat1 may control VSMC functions central to vascular remodeling by facilitating migration and limiting proliferation.


RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 44998-45014 ◽  
Author(s):  
Krishnamurthy Shanthi ◽  
Karuppaiya Vimala ◽  
Dhanaraj Gopi ◽  
Soundarapandian Kannan

Schematic illustration of the possible mechanism of pH based drug delivery system of DOX conjugated PEGylated PdNPs induced apoptosis in HeLa cells.


Sign in / Sign up

Export Citation Format

Share Document