scholarly journals Metabolomic Insight into Polycystic Ovary Syndrome—An Overview

2020 ◽  
Vol 21 (14) ◽  
pp. 4853 ◽  
Author(s):  
Anna Rajska ◽  
Magdalena Buszewska-Forajta ◽  
Dominik Rachoń ◽  
Michał Jan Markuszewski

Searching for the mechanisms of the polycystic ovary syndrome (PCOS) pathophysiology has become a crucial aspect of research performed in the last decades. However, the pathogenesis of this complex and heterogeneous endocrinopathy remains unknown. Thus, there is a need to investigate the metabolic pathways, which could be involved in the pathophysiology of PCOS and to find the metabolic markers of this disorder. The application of metabolomics gives a promising insight into the research on PCOS. It is a valuable and rapidly expanding tool, enabling the discovery of novel metabolites, which may be the potential biomarkers of several metabolic and endocrine disorders. The utilization of this approach could also improve the process of diagnosis and therefore, make treatment more effective. This review article aims to summarize actual and meaningful metabolomic studies in PCOS and point to the potential biomarkers detected in serum, urine, and follicular fluid of the affected women.

2019 ◽  
Vol 104 (9) ◽  
pp. 3835-3850 ◽  
Author(s):  
Matthew Dapas ◽  
Ryan Sisk ◽  
Richard S Legro ◽  
Margrit Urbanek ◽  
Andrea Dunaif ◽  
...  

AbstractContextPolycystic ovary syndrome (PCOS) is among the most common endocrine disorders of premenopausal women, affecting 5% to15% of this population depending on the diagnostic criteria applied. It is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is highly heritable, but only a small proportion of this heritability can be accounted for by the common genetic susceptibility variants identified to date.ObjectiveThe objective of this study was to test whether rare genetic variants contribute to PCOS pathogenesis.Design, Patients, and MethodsWe performed whole-genome sequencing on DNA from 261 individuals from 62 families with one or more daughters with PCOS. We tested for associations of rare variants with PCOS and its concomitant hormonal traits using a quantitative trait meta-analysis.ResultsWe found rare variants in DENND1A (P = 5.31 × 10−5, adjusted P = 0.039) that were significantly associated with reproductive and metabolic traits in PCOS families.ConclusionsCommon variants in DENND1A have previously been associated with PCOS diagnosis in genome-wide association studies. Subsequent studies indicated that DENND1A is an important regulator of human ovarian androgen biosynthesis. Our findings provide additional evidence that DENND1A plays a central role in PCOS and suggest that rare noncoding variants contribute to disease pathogenesis.


Author(s):  
Nahid Sarahian ◽  
Mahsa Noroozzadeh ◽  
Marzieh Saei Ghare Naz ◽  
Narges Eskandari-Roozbahani ◽  
Fatemeh Mahboobifard ◽  
...  

2018 ◽  
Author(s):  
Matthew Dapas ◽  
Ryan Sisk ◽  
Richard S. Legro ◽  
Margrit Urbanek ◽  
Andrea Dunaif ◽  
...  

ABSTRACTPolycystic ovary syndrome (PCOS) is among the most common endocrine disorders of premenopausal women, affecting 5-15% of this population depending on the diagnostic criteria applied. It is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. PCOS is a leading risk factor for type 2 diabetes in young women. PCOS is highly heritable, but only a small proportion of this heritability can be accounted for by the common genetic susceptibility variants identified to date. To test the hypothesis that rare genetic variants contribute to PCOS pathogenesis, we performed whole-genome sequencing on DNA from 62 families with one or more daughters with PCOS. We tested for associations of rare variants with PCOS and its concomitant hormonal traits using a quantitative trait meta-analysis. We found rare variants in DENND1A (P=5.31×10−5, Padj=0.019) that were significantly associated with reproductive and metabolic traits in PCOS families. Common variants in DENND1A have previously been associated with PCOS diagnosis in genome-wide association studies. Subsequent studies indicated that DENND1A is an important regulator of human ovarian androgen biosynthesis. Our findings provide additional evidence that DENND1A plays a central role in PCOS and suggest that rare noncoding variants contribute to disease pathogenesis.


Author(s):  
Ana Lúcia de Oliveira Bonfá ◽  
Eduardo Donato Alves ◽  
Víctor Fabrício ◽  
Keico Okino Nonaka ◽  
Janete Aparecida Anselmo-Franci ◽  
...  

Polycystic ovary syndrome (PCOS) is one of the most widely recognized endocrine disorders affecting reproductive-age women. The etiopathogenesis and mechanisms of this syndrome remain unclear. Diagnosis requires two of the following: polycystic ovaries, oligo- or anovulation, and hyperandrogenism. Most women with PCOS display conditions such as metabolic abnormalities, diabetes, obesity, cardiovascular disease, and/or bone dysfunction. Considering the ethical limitations of human studies, animal and cell culture models that reflect some features of PCOS are important for investigation of this syndrome. The aim of the present work was to study some of the endocrine relationships between ovaries and bone tissue in a polycystic ovary syndrome animal model. The study was performed using an estradiol valerate PCOS-induced rat model (n = 30) and bone mesenchymal stem cell cultured from bone marrow of those animals. It was hypothesized that changes of the endocrine relationship between ovaries and bones could be observed in from in vivo animal model and in vitro cell culture assays. The ovarian morphological and endocrine changes seem to be correlated with endocrine, biophysical, and biomechanical changes in bone properties. Mesenchymal stem cells obtained from PCOS-induced rats, cultured for up to 21 days and differentiated into osteoblasts, presented lower viability and reduced mineralization of the extracellular matrix. Taken together, these results indicate important endocrine and structural effects of PCOS in ovaries and bones, contributing to part of the understanding of the pathophysiological mechanisms of PCOS.


Author(s):  
Zhongwei Huang ◽  
Eu Leong Yong

Polycystic ovary syndrome (PCOS) is an enigmatic condition and its pathophysiology remains to be determined but it is likely to involve the androgen, insulin, and anti-Mullerian hormone pathways. PCOS is diagnosed in women in the reproductive age group based on the Rotterdam criteria. The spectrum of disease involves various phenotypes based on the current diagnostic criteria and this may have reproductive, metabolic, and endocrine consequences. Reproductive issues include that of irregular menstrual cycles and anovulation. Metabolic disorders such as insulin resistance, obesity, dyslipidaemia, and hypertension must be screened for in all women who are diagnosed with PCOS. Long-term risks of metabolic and endocrine disorders in women with PCOS still need further confirmation with more robust data. Reproductive ageing appears to be increased in women with PCOS and they seem to menopause at a later age. Thus far, PCOS appears to be associated with endometrial hyperplasia and cancer.


2019 ◽  
Vol 493 ◽  
pp. S320
Author(s):  
P. Maidana ◽  
A. Fritzler ◽  
G. Fernandez ◽  
D. Gonzalez ◽  
C. Ibar ◽  
...  

2013 ◽  
Vol 19 (6) ◽  
pp. 603-603 ◽  
Author(s):  
Nicolas Galazis ◽  
Nikolina Docheva ◽  
Kypros H. Nicolaides ◽  
William Atiomo

2018 ◽  
Vol 132 (7) ◽  
pp. 759-776 ◽  
Author(s):  
Xiao Wang ◽  
Huarong Wang ◽  
Wei Liu ◽  
Zhiyuan Zhang ◽  
Yanhao Zhang ◽  
...  

Polycystic ovary syndrome (PCOS), which is characterized by hyperandrogenism, is a complex endocrinopathy that affects the fertility of 9–18% of reproductive-aged women. However, the exact mechanism of PCOS, especially hyperandrogen-induced anovulation, is largely unknown to date. Physiologically, the natriuretic peptide type C/natriuretic peptide receptor 2 (CNP/NPR2) system is essential for sustaining oocyte meiotic arrest until the preovulatory luteinizing hormone (LH) surge. We therefore hypothesized that the CNP/NPR2 system is also involved in PCOS and contributes to arresting oocyte meiosis and ovulation. Here, based on a dehydroepiandrosterone (DHEA)-induced PCOS-like mouse model, persistent high levels of CNP/NPR2 were detected in anovulation ovaries. Meanwhile, oocytes arrested at the germinal vesicle stage correlated with persistent high levels of androgen and estrogen. We further showed that ovulation failure in these mice could be a result of elevated Nppc/Npr2 gene transcription that was directly increased by androgen (AR) and estrogen (ER) receptor signaling. Consistent with this, anovulation was alleviated by administration of either exogenous human chorionic gonadotropin (hCG) or inhibitors of AR or ER to reduce the level of CNP/NPR2. Additionally, the CNP/NPR2 expression pattern in the anovulated follicles was, to some extent, consistent with the clinical expression in PCOS patients. Therefore, our study highlights the important role an overactive CNP/NPR2 system caused by hyperandrogenism in preventing oocytes from maturation and ovulation in PCOS mice. Our findings provide insight into potential mechanisms responsible for infertility in women with PCOS.


Sign in / Sign up

Export Citation Format

Share Document