scholarly journals Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19?

2020 ◽  
Vol 21 (14) ◽  
pp. 5171 ◽  
Author(s):  
Marta Menegazzi ◽  
Rachele Campagnari ◽  
Mariarita Bertoldi ◽  
Rosalia Crupi ◽  
Rosanna Di Paola ◽  
...  

Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.

2008 ◽  
Vol 86 (6) ◽  
pp. 495-502 ◽  
Author(s):  
Congde Huo ◽  
Guoqing Shi ◽  
Wai Har Lam ◽  
Di Chen ◽  
Quizhi Cindy Cui ◽  
...  

A semi-synthetic route to the D-ring analogs of (–)-epigallocatechin gallate (EGCG) from the relatively abundant (–)-epigallocatechin (EGC), isolated from green tea leaves, is described. A natural product (13), found in Cistus salvifolius, its acetate (14) and analog (17) were synthesized by this method. Their inhibitory activities against proteasomes were investigated.Key words: green tea, (–)-epigallocatechin gallate (EGCG), (–)-epigallocatechin (EGC), proteasome inhibition.


2017 ◽  
Vol 6 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Wara Dyah Pita Rengga ◽  
Arie Yufitasari ◽  
Wismoyo Adi

The synthesis of silver nanoparticles with micro size is highly required in antibacterial fields. The biorefinery material is highly potential as a bioreductor which is applied in the synthesis of nanoparticles. The bioreductor is made from green tea leaves extraction using aquadest to extract its active substance, the catechin which is derived from polyphenol. The polyphenol can reduce the synthesis of silver nanoparticles naturally. The result of FTIR analysis from green tea leaves extract containing polyphenol shown in the uptake functional groups is -OH group located in 3425 cm-1, C=O group located in 1635 cm-1, C=C group located in 1527, and 1442 cm-1 , and C-O group located in 1234 cm-1. The precursors of AgNO3 was used as the main synthetic material. The synthetic condition was resulted from the reaction between the extraction of green tea extract and AgNO3 as the precursors in the variation of synthetizing time. The heating process during synthesizing is done in 50 ?C along with stirring to foster the creation of silver nanoparticles. The analysis result of XRD shows that silver nanoparticles has the diffraction peaks in the angle of 2 theta that are 44.08, 64.40, and 77.51. The types of silver nanoparticles is Ag0 nanoparticles with face-centered cubic crystal structure. Based on TEM analysis, the size and particle size distribution can be determined using image J. The distribution shows that the longer synthesizing time, the bigger nanoparticles produced. With synthesizing times at 24 hours, 6 hours, 3 hours, and 2 hours produce average particle size of 26.4 nm; 9.2 nm; 8.4 nm; and 7.4 nm respectively.


2008 ◽  
Vol 37 (8) ◽  
pp. 1025-1029 ◽  
Author(s):  
Lan-Sook Lee ◽  
Hwan-Soo Cha ◽  
Jong-Dae Park ◽  
Sung-Hun Yi ◽  
Sang-Hee Kim

Author(s):  
Ludfia Windyasmara ◽  
Ambar Pertiwiningrum ◽  
Yuny Erwanto ◽  
Novian Wely Asmoro ◽  
Afriyanti Afriyanti

This study intends to find out the impact of green tea leaves’ concentration and heating temperature on the physical quality of the antimicrobial edible film (AmEF) made from chicken bone gelatin. This study also utilizes chicken bone waste, in oder to increase both monetary value and the usefulness of that waste. The bone gelatin will then be utilized as AMeF and combined with green tea leaves’ extract (Camellia sinensis) that used as sausage wrapper. Several stages have been taken placed as follow: chicken bone gelatin production; green tea leaves extraction; and tea leaves’ extract-AMeF production. cCompletely randomized design with the factorial pattern was used in this study. Data was statistically analyzed using uni-variate analysis with 5% significance rate. Duncan’s Multiple Range Test (DMRT) will later be used to further test if there is a difference between each treatment. The physical qualities of AmEF that tested in this study include clarity, color, and thickness. The result of this study shows that a clarity value of AmEF was ranged between 0.62-2.12 abs, color was 0.87-2.60 abs, and 0.015-0.023 mm of thickness. The addition of tea extract and heating temperature have significant (P<0.05) effect on the clarity and color while have no effect on the thickness.


2007 ◽  
Vol 12 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Dae-Jin Kim ◽  
Dae-Soo Chung ◽  
Sung-Chul C. Bai ◽  
Hyeong-Soo Kim ◽  
Yu-Bang Lee

Author(s):  
Ali Forouzanfar ◽  
Hamideh Sadat Mohammadipour ◽  
Fatemeh Forouzanfar

: Periodontal diseases are highly prevalent and can affect high percentage of the world population. Oxidative stress and inflammation plays an important role in the pathogenesis of periodontal diseases. Nowadays, more attention has been focused on the herbal remedies in the field of drug discovery. Green tea is an important source of polyphenol antioxidants, it has long been used as a beverage worldwide. The most interesting polyphenol components of green tea leaves that are related with health benefits are the catechins. Taken together this review suggested that green tea with its wide spectrum of activities could be a healthy alternative for controlling the damaging reactions seen in periodontal diseases.


2021 ◽  
Vol 1795 (1) ◽  
pp. 012070
Author(s):  
Hamsa A. Abdulmageed ◽  
Abdulhadi. K. Judran ◽  
Farah T. M. Noori

Cellulose ◽  
2021 ◽  
Author(s):  
Nina Čuk ◽  
Martin Šala ◽  
Marija Gorjanc

Abstract The development of cellulose-based textiles that are functionalised with silver nanoparticles (AgNP), synthesised according to a green approach, and offer protection against ultraviolet (UV) radiation and pathogenic bacteria is very important today. In the present work we demonstrate the environmentally friendly approach to obtain such textile material by AgNP synthesis directly (in-situ) on cotton fabrics, using water extracts of plant food waste (green tea leaves, avocado seed and pomegranate peel) and alien invasive plants (Japanese knotweed rhizome, goldenrod flowers and staghorn sumac fruit) as reducing agents. The extracts were analysed for their total content of phenols and flavonoids and their antioxidant activity. The synthesised AgNP on cotton were round, of different size and amount depending on the reducing agent used. The highest amount of AgNP was found for samples where Japanese knotweed rhizome extract was used as reducing agent and the lowest where extracts of goldenrod flowers and green tea leaves were used. Regardless of the reducing agent used to form AgNP, all cotton samples showed excellent protection against E. coli and S. aureus bacteria and against UV radiation with UV protection factor values above 50. The best results for UV protection even after the twelve repetitive washing cycles were found for the sample functionalized with AgNP synthesised with an extract of the Japanese knotweed rhizome. Due to the presence of AgNP on cotton, the air permeability and thermal conductivity decreased. AgNP had no effect on the change in breaking strength or elongation of fabrics. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document