scholarly journals Simple and Divided Leaves in Ferns: Exploring the Genetic Basis for Leaf Morphology Differences in the Genus Elaphoglossum (Dryopteridaceae)

2020 ◽  
Vol 21 (15) ◽  
pp. 5180 ◽  
Author(s):  
Alejandra Vasco ◽  
Barbara A. Ambrose

Despite the implications leaves have for life, their origin and development remain debated. Analyses across ferns and seed plants are fundamental to address the conservation or independent origins of megaphyllous leaf developmental mechanisms. Class I KNOX expression studies have been used to understand leaf development and, in ferns, have only been conducted in species with divided leaves. We performed expression analyses of the Class I KNOX and Histone H4 genes throughout the development of leaf primordia in two simple-leaved and one divided-leaved fern taxa. We found Class I KNOX are expressed (1) throughout young and early developing leaves of simple and divided-leaved ferns, (2) later into leaf development of divided-leaved species compared to simple-leaved species, and (3) at the leaf primordium apex and margins. H4 expression is similar in young leaf primordia of simple and divided leaves. Persistent Class I KNOX expression at the margins of divided leaf primordia compared with simple leaf primordia indicates that temporal and spatial patterns of Class I KNOX expression correlate with different fern leaf morphologies. However, our results also indicate that Class I KNOX expression alone is not sufficient to promote divided leaf development in ferns. Class I KNOX patterns of expression in fern leaves support the conservation of an independently recruited developmental mechanism for leaf dissection in megaphylls, the shoot-like nature of fern leaves compared with seed plant leaves, and the critical role marginal meristems play in fern leaf development.

2020 ◽  
Vol 21 (12) ◽  
pp. 4295 ◽  
Author(s):  
Rafael Cruz ◽  
Gladys F. A. Melo-de-Pinna ◽  
Alejandra Vasco ◽  
Jefferson Prado ◽  
Barbara A. Ambrose

Unlike seed plants, ferns leaves are considered to be structures with delayed determinacy, with a leaf apical meristem similar to the shoot apical meristems. To better understand the meristematic organization during leaf development and determinacy control, we analyzed the cell divisions and expression of Class I KNOX genes in Mickelia scandens, a fern that produces larger leaves with more pinnae in its climbing form than in its terrestrial form. We performed anatomical, in situ hybridization, and qRT-PCR experiments with histone H4 (cell division marker) and Class I KNOX genes. We found that Class I KNOX genes are expressed in shoot apical meristems, leaf apical meristems, and pinnae primordia. During early development, cell divisions occur in the most distal regions of the analyzed structures, including pinnae, and are not restricted to apical cells. Fern leaves and pinnae bear apical meristems that may partially act as indeterminate shoots, supporting the hypothesis of homology between shoots and leaves. Class I KNOX expression is correlated with indeterminacy in the apex and leaf of ferns, suggesting a conserved function for these genes in euphyllophytes with compound leaves.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 265-278
Author(s):  
Jessica A Golby ◽  
Leigh Anna Tolar ◽  
Leo Pallanck

Abstract The N-ethylmaleimide-sensitive fusion protein (NSF) promotes the fusion of secretory vesicles with target membranes in both regulated and constitutive secretion. While it is thought that a single NSF may perform this function in many eukaryotes, previous work has shown that the Drosophila genome contains two distinct NSF genes, dNSF1 and dNSF2, raising the possibility that each plays a specific secretory role. To explore this possibility, we generated mutations in the dNSF2 gene and used these and novel dNSF1 loss-of-function mutations to analyze the temporal and spatial requirements and the degree of functional redundancy between dNSF1 and dNSF2. Results of this analysis indicate that dNSF1 function is required in the nervous system beginning at the adult stage of development and that dNSF2 function is required in mesoderm beginning at the first instar larval stage of development. Additional evidence suggests that dNSF1 and dNSF2 may play redundant roles during embryonic development and in the larval nervous system. Ectopic expression studies demonstrate that the dNSF1 and dNSF2 gene products can functionally substitute for one another. These results indicate that the Drosophila NSF proteins exhibit similar functional properties, but have evolved distinct tissue-specific roles.


2003 ◽  
Vol 81 (3) ◽  
pp. 131-140 ◽  
Author(s):  
John D Lewis ◽  
D Wade Abbott ◽  
Juan Ausió

The process of meiosis reduces a diploid cell to four haploid gametes and is accompanied by extensive recombination. Thus, the dynamics of chromatin during meiosis are significantly different than in mitotic cells. As spermatogenesis progresses, there is a widespread reorganization of the haploid genome followed by extensive DNA compaction. It has become increasingly clear that the dynamic composition of chromatin plays a critical role in the activities of enzymes and processes that act upon it. Therefore, an analysis of the role of histone variants and modifications in these processes may shed light upon the mechanisms involved and the control of chromatin structure in general. Histone variants such as histone H3.3, H2AX, and macroH2A appear to play key roles in the various stages of spermiogenesis, in addition to the specifically modulated acetylation of histone H4 (acH4), ubiquitination of histones H2A and H2B (uH2A, uH2B), and phosphorylation of histone H3 (H3p). This review will examine recent discoveries concerning the role of histone modifications and variants during meiosis and spermatogenesis.Key words: histone variants, histone modifications, chromatin structure, meiosis.


1972 ◽  
Vol 50 (7) ◽  
pp. 1479-1483 ◽  
Author(s):  
James D. Caponetti ◽  
William H. Harvey ◽  
A. E. DeMaggio

The complement of soluble proteins contained in the five annual leaf sets and the apical region of the shoot of cinnamon fern, Osmunda cinnamomea L., has been determined using disc electrophoresis. The apical region and the very young leaf primordia contained high and comparable numbers of soluble proteins. Older primordia and mature leaves contained progressively fewer soluble proteins, except that the number of proteins increased in the oldest sets of leaves. These findings are discussed in relation to the results reported for the leaves of some flowering plants.


1986 ◽  
Vol 64 (11) ◽  
pp. 2645-2649 ◽  
Author(s):  
E. K. Merrill

Green ash (Fraxinus pennsylvanica var. subintegerrima) seedlings are heteroblastic; during development they produce two types of leaves, simple and compound. When grown under controlled conditions, the sequence of leaf types is predictable. Simple leaves are always at the first four nodes; compound leaves are always at node 8 and above. Nodes 5 through 7 have progressively fewer simple leaves and more compound leaves. Leaf growth on seedlings meets the preconditions of the plastochron index and leaf plastochron index. These indices, as well as the length of single expanding leaves, can be used to predict lengths of leaf primordia at nodes 4 and 8 so that early, simple and compound leaf development can be compared in further studies of green ash.


2010 ◽  
Vol 22 (8) ◽  
pp. 1819-1831 ◽  
Author(s):  
Audrey Duarte ◽  
Richard N. Henson ◽  
Robert T. Knight ◽  
Tina Emery ◽  
Kim S. Graham

Lesion and neuroimaging studies suggest that orbito-frontal cortex (OFC) supports temporal aspects of episodic memory. However, it is unclear whether OFC contributes to the encoding and/or retrieval of temporal context and whether it is selective for temporal relative to nontemporal (spatial) context memory. We addressed this issue with two complimentary studies: functional magnetic resonance imaging to measure OFC activity associated with successful temporal and spatial context memory during encoding and retrieval in healthy young participants, and a neuropsychological investigation to measure changes in spatial and temporal context memory in OFC lesion patients. Imaging results revealed that OFC contributed to encoding and retrieval of associations between objects and their temporal but not their spatial contexts. Consistent with this, OFC patients exhibited impairments in temporal but not spatial source memory accuracy. These results suggest that OFC plays a critical role in the formation and subsequent retrieval of temporal context.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1297
Author(s):  
Surabhi Ranavat ◽  
Hannes Becher ◽  
Mark F. Newman ◽  
Vinita Gowda ◽  
Alex D. Twyford

Angiosperms possess various strategies to ensure reproductive success, such as stylar polymorphisms that encourage outcrossing. Here, we investigate the genetic basis of one such dimorphism that combines both temporal and spatial separation of sexual function, termed flexistyly. It is a floral strategy characterised by the presence of two morphs that differ in the timing of stylar movement. We performed a de novo assembly of the genome of Alpinia nigra using high-depth genomic sequencing. We then used Pool-seq to identify candidate regions for flexistyly based on allele frequency or coverage differences between pools of anaflexistylous and cataflexistylous morphs. The final genome assembly size was 2 Gb, and showed no evidence of recent polyploidy. The Pool-seq did not reveal large regions with high FST values, suggesting large structural chromosomal polymorphisms are unlikely to underlie differences between morphs. Similarly, no region had a 1:2 mapping depth ratio which would be indicative of hemizygosity. We propose that flexistyly is governed by a small genomic region that might be difficult to detect with Pool-seq, or a complex genomic region that proved difficult to assemble. Our genome will be a valuable resource for future studies of gingers, and provides the first steps towards characterising this complex floral phenotype.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1939-1939 ◽  
Author(s):  
Takeshi Harada ◽  
Asuka Oda ◽  
Yohann Grondin ◽  
Jumpei Teramachi ◽  
Ariunzaya Bat-Erdene ◽  
...  

Abstract Multiple myeloma (MM) is a heterogeneous clonal plasma cell proliferative disorder with CRAB features. Although survival of MM patients has been greatly prolonged by recent implementation of various combinatory treatments with novel anti-MM agents, MM still remains incurable. MM cells preferentially grow and expand in the bone marrow to elicit the alteration of gene expression and thereby drug resistance. To improve the therapeutic efficacy, we urgently need to develop novel treatment strategies targeting the BM microenvironment-mediated drug resistance. The serine/threonine kinase Pim-2 is constitutively over-expressed and acts as a pro-survival mediator in MM cells. We have reported that cocultures with bone marrow stromal cells (BMSCs) or osteoclasts (OCs) further up-regulate Pim-2 expression in MM cells to confer drug resistance (Leukemia 2011, 2015). Therefore, Pim-2 appears to be an important therapeutic target to impair the BM microenvironment-mediated drug resistance in MM. Histone deacetylases (HDACs) are generally accepted to be therapeutic targets for MM treatment. However, clinical application of currently available pan-HDAC inhibitors is limited with their adverse effects induced by a non-selective HDAC inhibition. To develop safe and effective HDAC inhibitor-based treatment, the therapeutic roles of HDAC isoform-specific inhibition should be elucidated. In this regard, we have recently reported therapeutic impacts on MM cells of inhibition of class-I HDACs, especially HDAC1 and HDAC3. HDAC3-selective inhibitor BG45 induces anti-MM activity in combination with DNA methyltransferase (DNMT) inhibitor azacytidine (Leukemia 2017). In the present study, we aimed to clarify the underlying mechanisms for impairment of MM cell growth and survival by HDAC1 inhibition. We first referenced the expression of class-I HDACs using a publicly available GSE6691 data set. Among class-I HDACs, HDAC1 and HDAC3 were highly expressed in MM cells. We then knockdowned HDAC1 gene using lentiviral shRNA system in MM cell lines. The HDAC1 gene silencing induced MM cell death with caspase-3 activation, indicating the critical role of HDAC1 in MM cell growth and survival. To determine target molecules of HDAC1, we carried out RNA-sequencing with and without the HDAC1 gene silencing in RPMI 8226 cells. Among genes whose expression significantly changed by the HDAC1 knockdown (adjusted P values < 0.05, log fold change > 0.5), we focused on IRF4 together with PIM2, because MM cell has been demonstrated to addict to aberrant IRF4-c-Myc regulatory network (Nature 2008). Downregulation of IRF4 and Pim-2 by the HDAC1 knockdown was further confirmed by quantitative PCR (Q-PCR) and immunoblotting in RPMI 8226 and MM.1S cells. Treatment with the class I HDAC-selective inhibitor MS-275 (entinostat) also induced MM cell death along with reduction of IRF4 and Pim-2 expression. Since previous study has shown that IRF4 binds to PIM2 promoter in MM cells (Nature 2008), we examined whether IRF4 regulates PIM2 expression. We found that IRF4 binds to the PIM2 promoter region by analyzing ChIP-Seq data in KMS-12 cells (GSE22901). We further confirmed the binding of IRF4 on PIM2 promoter by ChIP-Q-PCR. Indeed, the IRF4 knockdown downregulated Pim-2 expression in RPMI 8226 cells. These results suggest that HDAC1 inhibition downregulates IRF4 expression, thereby transcriptionally reducing PIM2 expression in MM cells. Pim-2 expression can also be augmented by multiple signaling pathways, including HIF-1a, JAK-STAT and NF-kB-mediated ones in MM cells through the interaction with BM microenvironment. Interestingly, the Pim inhibitor SMI-16a and MS-275 cooperatively induced apoptotic cell death in MM cell lines and CD138-positive primary MM cells even in the presence of BMSCs. Taken together, our results demonstrate the critical role of the HDAC1-IRF4-Pim-2 axis in MM cell growth and survival, and provoke the novel treatment strategy targeting the HDAC1-IRF4-Pim-2 axis in MM cells. Disclosures Anderson: Takeda Millennium: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Oncopep: Equity Ownership; C4 Therapeutics: Equity Ownership; Celgene: Consultancy; Bristol Myers Squibb: Consultancy.


2020 ◽  
Vol 33 (10) ◽  
pp. 1242-1251
Author(s):  
Guangyuan Wang ◽  
Limin Song ◽  
Tingting Bai ◽  
Wenxing Liang

Histone acetyltransferase plays a critical role in transcriptional regulation by increasing accessibility of target genes to transcriptional activators. Botrytis cinerea is an important necrotrophic fungal pathogen with worldwide distribution and a very wide host range, but little is known of how the fungus regulates the transition from saprophytic growth to infectious growth. Here, the function of BcSas2, a histone acetyltransferase of B. cinerea, was investigated. Deletion of the BcSAS2 gene resulted in significantly reduced acetylation levels of histone H4, particularly of H4K16ac. The deletion mutant ΔBcSas2.1 was not only less pathogenic but also more sensitive to oxidative stress than the wild-type strain. RNA-Seq analysis revealed that a total of 13 B. cinerea genes associated with pathogenicity were down-regulated in the ΔBcSas2.1 mutant. Independent knockouts of two of these genes, BcXYGA (xyloglucanase) and BcCAT (catalase), led to dramatically decreased virulence and hypersensitivity to oxidative stress, respectively. Chromatin immunoprecipitation followed by quantitative PCR confirmed that BcSas2 bound directly to the promoter regions of both these pathogenicity-related genes. These observations indicated that BcSas2 regulated the transcription of pathogenicity-related genes by controlling the acetylation level of H4K16, thereby affecting the virulence and oxidative sensitivity of B. cinerea.


1997 ◽  
Vol 75 (1) ◽  
pp. 170-187 ◽  
Author(s):  
W. A. Charlton

The rotated-lamina syndrome is a condition most commonly found in dorsiventral shoots with distichous phyllotaxis. Typically, young laminae in bud appear to be rotated to face towards the upper side of the shoot. The syndrome arises by asymmetrical growth from leaf primordia that initially face the shoot apex in approximately the normal way. It was previously described in Tilia. Further genera of Tiliaceae and the closely related Sterculiaceae were examined for the presence of the syndrome. Altogether it was found in 9 genera of the 30 examined. The syndrome is well developed in representatives of Commersonia, Corchorus, and Pterospermum, and less well developed in Luehia seemannii. Expression of the syndrome is minimal in Luehia divaricata, Theobroma, Byttneria, and Grewia. In all cases with distichous phyllotaxis that were examined in these families, the leaf primordia show at least some asymmetry in development and consequently there appears to be a predisposition to lamina rotation within the group. The syndrome is probably becoming suppressed in cases with minimal expression. The situation in dorsiventral shoots of Corchorus and Byttneria is complicated by the presence of inflorescences that arise in a leaf-opposed position. Key words: Sterculiaceae, Tiliaceae, leaf, development, dorsiventrality, lamina rotation.


Sign in / Sign up

Export Citation Format

Share Document