scholarly journals Doxorubicin-Induced Translocation of mtDNA into the Nuclear Genome of Human Lymphocytes Detected Using a Molecular-Cytogenetic Approach

2020 ◽  
Vol 21 (20) ◽  
pp. 7690
Author(s):  
Tigran Harutyunyan ◽  
Ahmed Al-Rikabi ◽  
Anzhela Sargsyan ◽  
Galina Hovhannisyan ◽  
Rouben Aroutiounian ◽  
...  

Translocation of mtDNA in the nuclear genome is an ongoing process that contributes to the development of pathological conditions in humans. However, the causal factors of this biological phenomenon in human cells are poorly studied. Here we analyzed mtDNA insertions in the nuclear genome of human lymphocytes after in vitro treatment with doxorubicin (DOX) using a fluorescence in situ hybridization (FISH) technique. The number of mtDNA insertions positively correlated with the number of DOX-induced micronuclei, suggesting that DOX-induced chromosome breaks contribute to insertion events. Analysis of the odds ratios (OR) revealed that DOX at concentrations of 0.025 and 0.035 µg/mL significantly increases the rate of mtDNA insertions (OR: 3.53 (95% CI: 1.42–8.76, p < 0.05) and 3.02 (95% CI: 1.19–7.62, p < 0.05), respectively). Analysis of the distribution of mtDNA insertions in the genome revealed that DOX-induced mtDNA insertions are more frequent in larger chromosomes, which are more prone to the damaging action of DOX. Overall, our data suggest that DOX-induced chromosome damage can be a causal factor for insertions of mtDNA in the nuclear genome of human lymphocytes. It can be assumed that the impact of a large number of external and internal mutagenic factors contributes significantly to the origin and amount of mtDNA in nuclear genomes.

2020 ◽  
Vol 21 (8) ◽  
pp. 2959
Author(s):  
Paul Triller ◽  
Julia Bachorz ◽  
Michael Synowitz ◽  
Helmut Kettenmann ◽  
Darko Markovic

Malignant gliomas are primary brain tumors with poor prognoses. These tumors are infiltrated by brain intrinsic microglia and peripheral monocytes which promote glioma cell invasion. In our previous studies, we discovered that the activation of Toll-like receptor 2 (TLR2) on microglia/brain macrophages converts them into a protumorigenic phenotype through the induction of matrix metalloproteinases (MMP) 9 and 14. In the present study, we used in vitro and in situ microglia-glioma interaction experimental models to test the impact of a novel inhibitor of TLR 2, ortho vanillin (O-Vanillin) to block TLR2 mediated microglia protumorigenic phenotype. We demonstrate that O-Vanillin inhibits the TLR2 mediated upregulation of MMP 9, MMP 14, IL 6 and iNOS expression. Similarly, the glioma supernatant induced MMP 9 and MMP 14 expression in murine and human microglia is abrogated by O-Vanillin treatment. O-Vanillin is not toxic for microglia, astrocytes or oligodendrocytes. Glioma growth in murine brain slice cultures is significantly reduced after treatment with O-Vanillin, and this reduced glioma growth depends on the presence of microglia. In addition, we also found that O-Vanillin inhibited the glioma induced proliferation of murine primary microglia. In summary, O-Vanillin attenuates the pro-tumorigenic phenotype of microglia/brain macrophages and thus qualifies as a candidate for glioma therapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Saskia Stier ◽  
Claudia Maletzki ◽  
Ulrike Klier ◽  
Michael Linnebacher

Toll-like receptors (TLRs), a family of pattern recognition receptors recognizing molecules expressed by pathogens, are typically expressed by immune cells. However, several recent studies revealed functional TLR expression also on tumor cells. Their expression is a two-sided coin for tumor cells. Not only tumor-promoting effects of TLR ligands are described but also direct oncopathic and immunostimulatory effects. To clarify TLRs’ role in colorectal cancer (CRC), we tested the impact of the TLR ligands LPS, Poly I:C, R848, and Taxol on primary human CRC cell lines (HROC40, HROC60, and HROC69)in vitroandin vivo(CT26). Taxol, not only a potent tumor-apoptosis-inducing, but also TLR4-activating chemotherapeutic compound, inhibited growth and viability of all cell lines, whereas the remaining TLR ligands had only marginal effects (R848 > LPS > Poly I:C). Combinations of the substances here did not improve the results, whereas antitumoral effects were dramatically boosted when human lymphocytes were added. Here, combining the TLR ligands often diminished antitumoral effects.In vivo, best tumor growth control was achieved by the combination of Taxol and R848. However, when combined with LPS, Taxol accelerated tumor growth. These data generally prove the potential of TLR ligands to control tumor growth and activate immune cells, but they also demonstrate the importance of choosing the right combinations.


2017 ◽  
Vol 68 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Sandra Petrović ◽  
Vesna Vasić ◽  
Tatjana Mitrović ◽  
Saša Lazović ◽  
Andreja Leskovac

Abstract Undecylprodigiosin pigment (UPP) is reported to display cytotoxic activity towards various types of tumours. Nevertheless, its efficacy in modifying the cellular response to ionising radiation is still unknown. In this study, the radiomodulating effects of UPP were investigated. The effects of UPP were assessed in vitro by treating cultures of human peripheral blood with UPP and ionising radiation using two treatment regimens, the UPP pre-irradiation treatment and UPP post-irradiation treatment. The activity of UPP was investigated evaluating its effects on the radiation-induced micronuclei formation, cell proliferation, and induction of apoptosis. The redox modulating effects of UPP were examined measuring the catalase activity and the level of malondialdehyde, as a measure of oxidative stress. The results showed that UPP effects on cellular response to ionising radiation depend on its concentration and the timing of its administration. At low concentration, the UPP displayed radioprotective effects in γ-irradiated human lymphocytes while at higher concentrations, it acted as a radiosensitiser enhancing either mitotic catastrophe or apoptosis depending on the treatment regimen. The UPP modified redox processes in cells, particularly when it was employed prior to γ-irradiation. Our data highlight the importance of further research of the potential of UPP to sensitize tumour cells to radiation therapy by inhibiting pathways that lead to treatment resistance.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2185
Author(s):  
Miroslava Kačániová ◽  
Lucia Galovičová ◽  
Petra Borotová ◽  
Veronika Valková ◽  
Hana Ďúranová ◽  
...  

The essential oil of Syzygium (S.) aromaticum (CEO) is known for its good biological activity. The aim of the research was to evaluate in vitro and in situ antimicrobial and antibiofilm activity of the essential oil produced in Slovakia. The main components of CEO were eugenol 82.4% and (E)-caryophyllene 14.0%. The antimicrobial activity was either weak or very strong with inhibition zones ranging from 4.67 to 15.78 mm in gram-positive and gram-negative bacteria and from 8.22 to 18.56 mm in yeasts and fungi. Among the tested bacteria and fungi, the lowest values of MIC were determined for Staphylococcus (S.) aureus and Penicillium (P.) expansum, respectively. The vapor phase of CEO inhibited the growth of the microscopic filamentous fungi of the genus Penicillium when tested in situ on bread. The strongest effect of mycelia inhibition in a bread model was observed against P. expansum at concentrations of 250 and 500 μL/mL. The best antimicrobial activity of CEO in the carrot model was found against P. chrysosenum. Differences between the mass spectra of Bacillus (B.) subtilis biofilms on the tested surfaces (wood, glass) and the control sample were noted from the seventh day of culture. There were some changes in mass spectra of Stenotrophomonas (S.) maltophilia, which were observed in both experimental groups from the fifth day of culture. These findings confirmed the impact of CEO on the protein structure of older biofilms. The findings indicate that, besides being safe and sensorially attractive, S. aromaticum has antimicrobial activity, which makes it a potential substitute for chemical food preservatives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kristel Parv ◽  
Nestori Westerlund ◽  
Kevin Merchant ◽  
Milad Komijani ◽  
Robin S. Lindsay ◽  
...  

The tissue microenvironment in the mouse pancreas has been shown to promote very different polarizations of resident macrophages with islet-resident macrophages displaying an inflammatory “M1” profile and macrophages in the exocrine tissue mostly displaying an alternatively activated “M2” profile. The impact of this polarization on tissue homeostasis and diabetes development is unclear. In this study, the ability of pancreas-resident macrophages to phagocyte bacterial and endogenous debris was investigated. Mouse endocrine and exocrine tissues were separated, and tissue-resident macrophages were isolated by magnetic immunolabeling. Isolated macrophages were subjected to flow cytometry for polarization markers and qPCR for phagocytosis-related genes. Functional in vitro investigations included phagocytosis and efferocytosis assays using pH-sensitive fluorescent bacterial particles and dead fluorescent neutrophils, respectively. Intravital confocal imaging of in situ phagocytosis and efferocytosis in the pancreas was used to confirm findings in vivo. Gene expression analysis revealed no significant overall difference in expression of most phagocytosis-related genes in islet-resident vs. exocrine-resident macrophages included in the analysis. In this study, pancreas-resident macrophages were shown to differ in their ability to phagocyte bacterial and endogenous debris depending on their microenvironment. This difference in abilities may be one of the factors polarizing islet-resident macrophages to an inflammatory state since phagocytosis has been found to imprint macrophage heterogeneity. It remains unclear if this difference has any implications in the development of islet dysfunction or autoimmunity.


2020 ◽  
Vol 21 (23) ◽  
pp. 8930
Author(s):  
Genève Perron-Deshaies ◽  
Philippe St-Louis ◽  
Hugo Romero ◽  
Tatiana Scorza

Erythropoietin (EPO) is an essential hormone for erythropoiesis, protecting differentiating erythroblasts against apoptosis. EPO has been largely studied in stress or pathological conditions but its regulatory role in steady state erythropoiesis has been less documented. Herein, we report production of EPO by bone marrow-derived macrophages (BMDM) in vitro, and its further enhancement in BMDM conditioned with media from apoptotic cells. Confocal microscopy confirmed EPO production in erythroblastic island (EBI)-associated macrophages, and analysis of mice depleted of EBI macrophages by clodronate liposomes revealed drops in EPO levels in bone marrow (BM) cell lysates, and decreased percentages of EPO-responsive erythroblasts in the BM. We hypothesize that EBI macrophages are an in-situ source of EPO and sustain basal erythropoiesis in part through its secretion. To study this hypothesis, mice were injected with clodronate liposomes and were supplied with exogenous EPO (1–10 IU/mouse) to evaluate potential rescue of the deficiency in erythroid cells. Our results show that at doses of 5 and 10 IU, EPO significantly rescues BM steady state erythropoiesis in mice deficient of macrophages. We propose existence of a mechanism by which EBI macrophages secrete EPO in response to apoptotic erythroblasts, which is in turn controlled by the numbers of erythroid precursors generated.


2015 ◽  
Vol 49 (5) ◽  
pp. 477-487 ◽  
Author(s):  
Marie-Theres Weber ◽  
Matthias Hannig ◽  
Sandra Pötschke ◽  
Franziska Höhne ◽  
Christian Hannig

Objectives: Antiadherent and antibacterial effects of certain plant extracts have been proven to be beneficial in preventive dentistry. In the present in situ/in vitro crossover study, the impact of plant extracts rich in polyphenols on the erosion-protective properties of the in situ pellicle was evaluated. Methods: Individual splints were prepared for 12 subjects for intraoral exposure of bovine enamel specimens. Following formation of a 1-min pellicle, watery plant extracts (leaves of the wild form of Ribes nigrum, the wild form of Origanum as well as a combination of both) were administered for 10 min in situ. Alternatively, a mouth rinse with fluorides (Elmex Kariesschutz) was performed for 1 min. After further oral exposure for 19/28 min, respectively, slabs were removed and incubated with HCl in vitro over 120 s (pH 2, 2.3, 3). The resulting calcium and phosphate release was quantified photometrically. Slabs with and without a 30-min in situ pellicle served as controls. The modification of pellicle ultrastructure was evaluated by transmission electron microscopy (TEM). Results: Plant extracts modulated the erosion-protective properties of the native in situ pellicle in all test groups in a pH-dependent manner. The combination of R. nigrum leaves and Origanum enhanced the protective properties of the pellicle at all pH values; the administration of this preparation was comparable, yet superior, to the effect of the fluoridated mouth rinse. TEM images indicated that rinsing with R. nigrum leaves/Origanum yielded a distinctly thicker and more electron-dense pellicle. Conclusion: The combination of certain plant extracts offers a novel approach to the complementary prevention of dental erosion.


2006 ◽  
Vol 290 (2) ◽  
pp. G361-G368 ◽  
Author(s):  
Taisuke Otani ◽  
Kentaro Yamaguchi ◽  
Ellen Scherl ◽  
Baoheng Du ◽  
Hsin-Hsiung Tai ◽  
...  

Increased amounts of PGE2 have been detected in the inflamed mucosa of patients with inflammatory bowel disease (IBD). This increase has been attributed to enhanced synthesis rather than reduced catabolism of PGE2. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) plays a major role in the catabolism of PGE2. In this study, we investigated whether amounts of 15-PGDH were altered in inflamed mucosa from patients with IBD. Amounts of 15-PGDH protein and mRNA were markedly reduced in inflamed mucosa from patients with Crohn's disease and ulcerative colitis. In situ hybridization demonstrated that 15-PGDH was expressed in normal colonic epithelium but was virtually absent in inflamed colonic mucosa from IBD patients. Because of the importance of TNF-α in IBD, we also determined the effects of TNF-α on the expression of 15-PGDH in vitro. Treatment with TNF-α suppressed the transcription of 15-PGDH in human colonocytes, resulting in reduced amounts of 15-PGDH mRNA and protein and enzyme activity. In contrast, TNF-α induced two enzymes (cyclooxygenase-2 and microsomal prostaglandin E synthase-1) that contribute to increased synthesis of PGE2. Overexpressing 15-PGDH blocked the increase in PGE2 production mediated by TNF-α. Taken together, these results suggest that reduced expression of 15-PGDH contributes to the elevated levels of PGE2 found in inflamed mucosa of IBD patients. The decrease in amounts of 15-PGDH in inflamed mucosa can be explained at least, in part, by TNF-α-mediated suppression of 15-PGDH transcription.


Sign in / Sign up

Export Citation Format

Share Document