scholarly journals D-limonene Inhibits Pentylenetetrazole-Induced Seizure via Adenosine A2A Receptor Modulation on GABAergic Neuronal Activity

2020 ◽  
Vol 21 (23) ◽  
pp. 9277
Author(s):  
Sowoon Seo ◽  
Yunjeong Song ◽  
Sun Mi Gu ◽  
Hyun Kyu Min ◽  
Jin Tae Hong ◽  
...  

Background: Epilepsy is a chronic neurological disorder characterized by the recurrence of seizures. One-third of patients with epilepsy may not respond to antiseizure drugs. Purpose: We aimed to examine whether D-limonene, a cyclic monoterpene, exhibited any antiseizure activity in the pentylenetetrazole (PTZ)-induced kindling mouse model and in vitro. Methods: PTZ kindling mouse model was established by administering PTZ (30 mg/kg) intraperitoneally to mice once every 48 h. We performed immunoblot blots, immunohistochemistry (IHC), and high-performance liquid chromatography (HPLC) analysis after the behavioral study. Results: An acute injection of PTZ (60 mg/kg) induced seizure in mice, while pretreatment with D-limonene inhibited PTZ-induced seizure. Repeated administration of PTZ (30 mg/kg) increased the seizure score gradually in mice, which was reduced in D-limonene (10 mg/kg)-pretreated group. In addition, D-limonene treatment increased glutamate decarboxylase-67 (GAD-67) expression in the hippocampus. Axonal sprouting of hippocampal neurons after kindling was inhibited by D-limonene pretreatment. Moreover, D-limonene reduced the expression levels of Neuronal PAS Domain Protein 4 (Npas4)-induced by PTZ. Furthermore, the adenosine A2A antagonist SCH58261 and ZM241385 inhibited anticonvulsant activity and gamma-aminobutyric acid (GABA)ergic neurotransmission-induced by D-limonene. Conclusion: These results suggest that D-limonene exhibits anticonvulsant activity through modulation of adenosine A2A receptors on GABAergic neuronal function.

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Tarek El-Naggar ◽  
María Pilar Gómez-Serranillos ◽  
Olga María Palomino ◽  
Carmen Arce ◽  
María Emilia Carretero

Nigella sativaL. (NS) has been used for medicinal purposes since ancient times. This study aimed to investigate the cytotoxicity of NS dry methanolic extract on cultured cortical neurons and its influence on neurotransmitter release, as well as the presence of excitatory (glutamate and aspartate) and inhibitory amino acids (gamma-aminobutyric acid—GABA—and glycine) in NS extract. Cultured rat cortical neurons were exposed to different times and concentrations of NS dry methanolic extract and cell viability was then determined by a quantitative colorimetric method. NS did not induce any toxicity. The secretion of different amino acids was studied in primary cultured cortical neurons by high-performance liquid chromatography (HPLC) using a derivation before injection with dansyl chloride. NS modulated amino acid release in cultured neurons; GABA was significantly increased whereas secretion of glutamate, aspartate, and glycine were decreased. Thein vitrofindings support the hypothesis that the sedative and depressive effects of NS observedin vivocould be based on changes of inhibitory/excitatory amino acids levels.


2020 ◽  
Vol 21 (12) ◽  
pp. 4372
Author(s):  
Agnieszka Gunia-Krzyżak ◽  
Ewa Żesławska ◽  
Karolina Słoczyńska ◽  
Dorota Żelaszczyk ◽  
Aleksandra Sowa ◽  
...  

Epilepsy is one of the most frequent neurological disorders affecting about 1% of the world’s human population. Despite availability of multiple treatment options including antiseizure drugs, it is estimated that about 30% of seizures still remain resistant to pharmacotherapy. Searching for new antiseizure and antiepileptic agents constitutes an important issue within modern medicinal chemistry. Cinnamamide derivatives were identified in preclinical as well as clinical studies as important drug candidates for the treatment of epilepsy. The cinnamamide derivative presented here: S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide (S(+)-N-(2-hydroxypropyl)cinnamamide, compound KM-568) showed anticonvulsant activity in several models of epilepsy and seizures in mice and rats. It was active in a genetic animal model of epilepsy (Frings audiogenic seizure-susceptible mouse model, ED50 = 13.21 mg/kg, i.p.), acute seizures induced electrically (maximal electroshock test ED50 = 44.46 mg/kg mice i.p., ED50 = 86.6 mg/kg mice p.o., ED50 = 27.58 mg/kg rats i.p., ED50 = 30.81 mg/kg rats p.o., 6-Hz psychomotor seizure model 32 mA ED50 = 71.55 mg/kg mice i.p., 44 mA ED50 = 114.4 mg/kg mice i.p.), chronic seizures induced electrically (corneal kindled mouse model ED50 = 79.17 mg/kg i.p., hippocampal kindled rat model ED50 = 24.21 mg/kg i.p., lamotrigine-resistant amygdala kindled seizure model in rats ED50 = 58.59 mg/kg i.p.), acute seizures induced chemically (subcutaneous metrazol seizure threshold test ED50 = 104.29 mg/kg mice i.p., ED50 = 107.27 mg/kg mice p.o., ED50 = 41.72 mg/kg rats i.p., seizures induced by picrotoxin in mice ED50 = 94.11 mg/kg i.p.) and the pilocarpine-induced status epilepticus model in rats (ED50 = 279.45 mg/kg i.p., ED97 = 498.2 mg/kg i.p.). The chemical structure of the compound including configuration of the chiral center was confirmed by NMR spectroscopy, LC/MS spectroscopy, elemental analysis, and crystallography. Compound KM-568 was identified as a moderately stable derivative in an in vitro mouse liver microsome system. According to the Ames microplate format mutagenicity assay performed, KM-568 was not a base substitution or frameshift mutagen. Cytotoxicity evaluation in two cell lines (HepG2 and H9c2) proved the safety of the compound in concentrations up to 100 µM. Based on the results of anticonvulsant activity and safety profile, S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide could be proposed as a new lead compound for further preclinical studies on novel treatment options for epilepsy.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 534
Author(s):  
Jana Wood ◽  
Sayeda Yasmin-Karim ◽  
Michele Moreau ◽  
Rajiv Kumar ◽  
Janet Akwanwi ◽  
...  

Indigenous populations use plants as an important healthcare resource or remedy for different diseases. Here, isolated extracts from Justicia (family Acanthanceae) plant leaves used in Africa as remedy for anemia are characterized by different methods to assess composition and potential nutritional or therapeutic value. Extracts from Justicia leaves were obtained by aqueous extraction, with further isolation by centrifuging and high-performance liquid chromatography. Extracts and isolated compounds were characterized by ultraviolet–visible (UV-Vis) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). Hemoglobin activity was assessed using different hemoglobin assays (Cayman Chemical, and Sigma–Aldrich), as well as ELISA. In addition, the safety of the isolated samples was assessed in vitro and in vivo in mice. ICP-MS study results revealed many essential metabolites found in blood plasma. The UV-Vis spectroscopy results highlighted the presence of hemoglobin, with assays showing levels over 4 times higher than that of similar mass of lyophilized human hemoglobin. Meanwhile, in vivo studies showed faster recovery from anemia in mice administered with the isolated extracts compared to untreated mice. Moreover, in vitro and in vivo studies highlighted safety of the extracts. This study reveals the presence of high levels of elements essential for blood health in the isolated extracts from Justicia plant leaves. The findings inspire further research with the potential applications in food fortification, and as remedy for blood disorders like anemia, which disproportionally affects cancer patients, pregnant women, and populations in low- and middle-income countries.


Author(s):  
David. J. Culp ◽  
William Hull ◽  
Matthew J. Bremgartner ◽  
Todd A. Atherly ◽  
Kacey N. Christian ◽  
...  

A collection of 113 Streptococcus strains from supragingival dental plaque of caries-free individuals were recently tested in vitro for direct antagonism of the dental caries pathogen Streptococcus mutans, and for their capacity for arginine catabolism via the arginine deiminase system (ADS). To advance their evaluation as potential probiotics, twelve strains of commensal oral streptococci with various antagonistic and ADS potentials were assessed in a mouse model for oral (i.e., oral mucosal pellicles and saliva) and dental colonization under four diets (healthy or high-sucrose, with or without prebiotic arginine). Colonization by autochthonous bacteria was also monitored. One strain failed to colonize, whereas oral colonization by the other eleven strains varied by 3 log units. Dental colonization was high for five strains regardless of diet, six strains increased colonization with at least one high-sucrose diet, and added dietary arginine decreased dental colonization of two strains. Streptococcus sp. A12 (high in vitro ADS activity and antagonism) and two engineered mutants lacking the ADS (ΔarcADS) or pyruvate oxidase-mediated H2O2 production (ΔspxB) were tested for competition against S. mutans UA159. A12 wild type and ΔarcADS colonized only transiently, whereas ΔspxB persisted, but without altering oral or dental colonization by S. mutans. In testing four additional candidates, S. sanguinis BCC23 markedly attenuated S. mutans’ oral and dental colonization, enhanced colonization of autochthonous bacteria, and decreased severity of smooth surface caries under highly cariogenic conditions. Results demonstrate the utility of the mouse model to evaluate potential probiotics, revealing little correlation between in vitro antagonism and competitiveness against S. mutans in vivo. IMPORTANCE Our results demonstrate in vivo testing of potential oral probiotics can be accomplished and can yield information to facilitate the ultimate design and optimization of novel anti-caries probiotics. We show human oral commensals associated with dental health are an important source of potential probiotics that may be used to colonize patients under dietary conditions of highly varying cariogenicity. Assessment of competitiveness against dental caries pathogen Streptococcus mutans and impact on caries identified strains or genetic elements for further study. Results also uncovered strains that enhanced oral and dental colonization by autochthonous bacteria when challenged with S. mutans, suggesting cooperative interactions for future elucidation. Distinguishing a rare strain that effectively compete with S. mutans under conditions that promote caries further validates our systematic approach to more critically evaluate probiotics for use in humans.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2327-2335
Author(s):  
B. Berninger ◽  
S. Marty ◽  
F. Zafra ◽  
M. da Penha Berzaghi ◽  
H. Thoenen ◽  
...  

gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the adult mammalian central nervous system. However, GABA depolarizes immature rat hippocampal neurons and increases intracellular Ca2+ ([Ca2+]i). Here we show, that GABA and the GABAA receptor agonist muscimol induce c-Fos immunoreactivity and increase BDNF mRNA expression in embryonic hippocampal neurons cultured for 5 days. In contrast, after 3 weeks in culture, GABA and muscimol failed to induce c-fos and BDNF expression. Fura-2 fluorescence microscopy revealed that muscimol produces a dihydropyridine-sensitive transient increase in [Ca2+]i, comparable to the effect of the non-NMDA receptor agonist kainic acid in neurons cultured for 5 days, but not in 3-week-old cultures. The increase in c-Fos immunoreactivity and BDNF mRNA levels by GABA were dependent upon the activation of voltage-gated Ca2+ channels, as shown using the L-type specific Ca2+ channel blocker nifedipine. The differential regulation of c-fos and BDNF expression by GABA and muscimol in developing and mature hippocampal neurons is due to a switch in the ability of GABAA receptors to activate voltage-gated Ca2+ channels. These observations support the hypothesis that GABA might have neurotrophic effects on embryonic or perinatal hippocampal neurons, which are mediated by BDNF.


2006 ◽  
Vol 105 (2) ◽  
pp. 325-333 ◽  
Author(s):  
Victor Y. Cheng ◽  
Robert P. Bonin ◽  
Mary W. Chiu ◽  
J Glen Newell ◽  
John F. MacDonald ◽  
...  

Background The mechanisms underlying the therapeutic actions of gabapentin remain poorly understood. The chemical structure and behavioral properties of gabapentin strongly suggest actions on inhibitory neurotransmission mediated by gamma-aminobutyric acid (GABA); however, gabapentin does not directly modulate GABAA or GABAB receptors. Two distinct forms of GABAergic inhibition occur in the brain: postsynaptic conductance and a persistent tonic inhibitory conductance primarily generated by extrasynaptic GABAA receptors. The aim of this study was to determine whether gabapentin increased the tonic conductance in hippocampal neurons in vitro. As a positive control, the effects of vigabatrin, which irreversibly inhibits GABA transaminase, were also examined. Methods GABAA receptors in hippocampal neurons from embryonic mice were studied using whole cell patch clamp recordings. Miniature inhibitory postsynaptic currents and the tonic current were recorded from cultured neurons that were treated for 36-48 h with gabapentin, vigabatrin, or gabapentin and vigabatrin. To determine whether gabapentin increased the expression of GABAA receptors, Western blots were stained with antibodies selective for alpha1, alpha2, and alpha5 subunits. Results GABAA receptors were insensitive to the acute application of gabapentin, whereas chronic treatment increased the amplitude of the tonic current threefold (EC50 = 209 microm) but did not influence miniature inhibitory postsynaptic currents. Vigabatrin increased the tonic conductance, and the maximally effective concentration did not occlude the actions of gabapentin, which suggests that these compounds act by different mechanisms. Neither gabapentin nor vigabatrin increased the expression of GABAA receptors in the neurons. Conclusions Gabapentin increases a tonic inhibitory conductance in mammalian neurons. High-affinity GABAA receptors that generate the tonic conductance may detect small increases in the ambient concentration of neurotransmitter caused by gabapentin.


2020 ◽  
Author(s):  
Yusong Zhang ◽  
Zhiguo Chen ◽  
Zhishan Yang ◽  
Yadi Han

Abstract Background: Previous data suggested that dipeptidyl peptidase-IV (DPP4) involved in the occurrence of febrile seizure (FS), but its potential mechanism remains to be determined. Here, we investigated whether DPP4 regulated gamma-aminobutyric acid (GABA) mediated spontaneous inhibitory postsynaptic currents (sIPSCs) via the downstream C-X-C Motif Chemokine Ligand 12 (CXCL12)/ C-X-C chemokine receptor type 4 (CXCR4) signaling in cultured hippocampal neurons submitted to hyperthermia(39.5-40°C). Methods: Whole cell patch- clamp method was used to test sIPSC in vitro after DPP4 inhibition or CXCL12 administration. The level of CXCL12 and CXCR4 was tested using western blot analysis. The effect of CXCR4 antagonist AMD3100 (5 mg/ml, i.c.v) on seizures were tested using electroencephalogram (EEG) in a FS model. Results: We found that pharmacological DPP4 inhibitor sitagliptin (Sita,100μM) treatment or siRNA-mediated DPP4 knockdown enhanced the mean amplitude and frequency of sIPSCs in vitro. DPP4 knockdown with siRNA increased protein level of CXCL12 and CXCR4. Furthermore, CXCL12 (10 nM) treatment enhanced inhibitory transmission by increasing the mean frequency and amplitude of sIPSCs in vitro. AMD3100 administration decreased seizure severity by increasing hippocampal GABA content in vivo. Conclusions: Our data suggest that CXCL12/CXCR4 signaling is required for DPP4 regulation of sIPSCs, supporting that DPP4 played a key role in the pathogenesis of FS.


2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


1987 ◽  
Vol 114 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Chohei Shigeno ◽  
Itsuo Yamamoto ◽  
Shegiharu Dokoh ◽  
Megumu Hino ◽  
Jun Aoki ◽  
...  

Abstract. We have partially purified a tumour factor capable of stimulating both bone resorption in vitro and cAMP accumulation in osteoblastic ROS 17/2 cells from three human tumours associated with humoral hypercalcaemia of malignancy. Purification of tumour factor by sequential acid urea extraction, gel filtration and cation-exchange chromatography, reverse-phase high performance liquid chromatography followed by analytical isoelectric focussing provided a basic protein (pI > 9.3) with a molecular weight of approximately 13 000 as a major component of the final preparation which retained both the two bioactivities. Bone resorbing activity and cAMP-increasing activity in purified factor correlated with each other. cAMP-increasing activity of the factor was heat- and acid-stable, but sensitive to alkaline ambient pH. Treatment with trypsin destroyed cAMP-increasing activity of the factor. Synthetic parathyroid hormone (PTH) antagonist, human PTH-(3– 34) completely inhibited the cAMP-increasing activity of the factor. The results suggest that this protein factor, having its effects on both osteoclastic and osteoblastic functions, may be involved in development of enhanced bone resorption in some patients with humoral hypercalcaemia of malignancy.


Sign in / Sign up

Export Citation Format

Share Document