scholarly journals Fabry Disease Therapy: State-of-the-Art and Current Challenges

2020 ◽  
Vol 22 (1) ◽  
pp. 206
Author(s):  
Olga Azevedo ◽  
Miguel Fernandes Gago ◽  
Gabriel Miltenberger-Miltenyi ◽  
Nuno Sousa ◽  
Damião Cunha

Fabry disease (FD) is a lysosomal storage disorder caused by mutations of the GLA gene that lead to a deficiency of the enzymatic activity of α-galactosidase A. Available therapies for FD include enzyme replacement therapy (ERT) (agalsidase alfa and agalsidase beta) and the chaperone migalastat. Despite the large body of literature published about ERT over the years, many issues remain unresolved, such as the optimal dose, the best timing to start therapy, and the clinical impact of anti-drug antibodies. Migalastat was recently approved for FD patients with amenable GLA mutations; however, recent studies have raised concerns that “in vitro” amenability may not always reflect “in vivo” amenability, and some findings on real-life studies have contrasted with the results of the pivotal clinical trials. Moreover, both FD specific therapies present limitations, and the attempt to correct the enzymatic deficiency, either by enzyme exogenous administration or enzyme stabilization with a chaperone, has not shown to be able to fully revert FD pathology and clinical manifestations. Therefore, several new therapies are under research, including new forms of ERT, substrate reduction therapy, mRNA therapy, and gene therapy. In this review, we provide an overview of the state-of-the-art on the currently approved and emerging new therapies for adult patients with FD.

2021 ◽  
Vol 22 (12) ◽  
pp. 6518
Author(s):  
Andrea Modrego ◽  
Marilla Amaranto ◽  
Agustina Godino ◽  
Rosa Mendoza ◽  
José Luis Barra ◽  
...  

Fabry disease (FD) is a lysosomal storage disease caused by mutations in the gene for the α-galactosidase A (GLA) enzyme. The absence of the enzyme or its activity results in the accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), in different tissues, leading to a wide range of clinical manifestations. More than 1000 natural variants have been described in the GLA gene, most of them affecting proper protein folding and enzymatic activity. Currently, FD is treated by enzyme replacement therapy (ERT) or pharmacological chaperone therapy (PCT). However, as both approaches show specific drawbacks, new strategies (such as new forms of ERT, organ/cell transplant, substrate reduction therapy, or gene therapy) are under extensive study. In this review, we summarize GLA mutants described so far and discuss their putative application for the development of novel drugs for the treatment of FD. Unfavorable mutants with lower activities and stabilities than wild-type enzymes could serve as tools for the development of new pharmacological chaperones. On the other hand, GLA mutants showing improved enzymatic activity have been identified and produced in vitro. Such mutants could overcome several complications associated with current ERT, as lower-dose infusions of these mutants could achieve a therapeutic effect equivalent to that of the wild-type enzyme.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Paolo Colomba ◽  
Simone Scalia ◽  
Giuseppe Cammarata ◽  
Carmela Zizzo ◽  
Daniele Francofonte ◽  
...  

Fabry disease is a multisystemic lysosomal storage disorder, inherited in an X-linked manner. It is a defect of metabolism of the glycosphingolipids, due to the reduction or absence of the activity of lysosomal enzyme α-galactosidase A. This reduction of activity causes the storage of globotriaosylceramide and derivatives in the lysosomes, triggering a cascade of cellular events, mainly in vascular endothelium. These events are the responsible for the systemic clinical manifestations and the renal, cardiac and cerebrovascular complications, or a combination of them. The symptomatology can lead to the premature death of patient between the fourth or fifth decade of life. The first symptoms can occur at different ages, generally in childhood, with different severity and course. Fabry disease is suspected on the basis of clinical and anamnestic-familial data, and it is confirmed by enzymatic and genetic assays. However, Fabry disease could be a pathology more complex than previously considered, and the diagnostic tests that are currently in use could be not always sufficient to confirm the clinical diagnosis. Probably, other factors could be also involved in the onset of symptomatology. In the last years, the knowledge of the disease is considerably increased but other studies are necessary to make a prompt and reliable diagnosis. An early diagnosis of Fabry disease is essential for the beginning of the enzyme replacement therapy, which can contribute to arrest its progression and improve the quality of life of patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3885-3885
Author(s):  
Pilar Alfonso ◽  
Paz Latre ◽  
Ignacio de Blas ◽  
Pilar Giraldo ◽  
Manuel Giralt ◽  
...  

Abstract Gaucher’s disease (GD) is an autosomal recessive lysosomal storage disorder, characterized by accumulation of glycosphingolipid in so-called Gaucher cells. The clinical manifestations of Gaucher disease are highly variable, and although certain genotypes are often associated with mild or severe symtomps, a defined correlation between genotype and phenotype does not exist. Identification of serum biochemical markers characteristic of disease may be useful in the diagnosis and monitoring of GD, nevertheless about 6% of the population does not express the chitotriosidase (CT) gene. In this study, we analyzed using currently available enzyme analysis the relationship among two known surrogate markers: CT, which utility in initiation and optimization of costly therapeutic interventions has been highly demonstrated, and a newly-described chemokine, pulmonary and activation-regulated chemokine (CCL18/PARC) as associated to Gaucher disease. Patients and methods: We have analysed 21 control samples, 149 samples of GD patients on enzyme replacement therapy (ERT), and 52 samples of GD patients on substrate reduction therapy (SRT), 4 samples of GD on combined therapy (ERT+SRT) and 7 samples of GD patients without therapy. The samples were stored at −80°C in the biobank of Biochemistry and Molecular and Cellular Biology Department of Zaragoza University. The CT activity and CCL18/PARC quantification were performed simultaneously in the samples obtained at baseline and yearly during 7 years under ERT. Results: our results concluded that both markers levels similarly fell with time and their variations correlated strongly each other, mainly in patients under ERT. The poor correlation of both variables in the case of SRT might be due to small number of samples. These findings demonstrated that CCL18 is a good biomarker of monitoring GD, comparable to CT and very useful in patients without expression of CT gene. Conclusion: The availability of sensitive plasma surrogate markers may be of great value for monitoring the efficacy of treatment, especially in cases of deficiencies of some marker.


2003 ◽  
Vol 358 (1433) ◽  
pp. 955-960 ◽  
Author(s):  
Chris Moyses

Glycosphingolipid (GSL) lysosomal storage disorders are inherited enzyme deficiencies that result in pathological lysosomal accumulation of glycolipids, with widespread clinical consequences. Type 1 Gaucher disease is the commonest of these; the deficient enzyme in this condition is glucocerebrosidase. Clinical manifestations include hepatosplenomegaly, thrombocytopenia, anaemia, recurrent infections and skeletal lesions. The condition can be treated with intravenous enzyme replacement therapy (ERT). Substrate reduction therapy is a new approach in which glycolipid accumulation is counteracted not by replacing the deficient enzyme but by reducing the substrate level to better balance residual activity of the deficient enzyme. Miglustat is an inhibitor of glucosylceramide synthase, a key enzyme in GSL synthesis. Oral administration of miglustat to patients with type 1 Gaucher disease attenuates the synthesis of glucocerebroside, the substrate of the deficient glucocerebrosidase. In the first clinical study, patients with type 1 Gaucher disease who had enlargement of the liver or spleen and (if present) the spleen at baseline received 12 months treatment with oral miglustat. There were mean decreases in liver and spleen volumes of 12% (7.9–16.4, p < 0.001) and 19% (14.3–23.7, p < 0.001), respectively. Mean haemoglobin increased by 0.26 g dl −1 (−0.5−0.57, not statistically significant) and platelet count by 8.3 × 10 9 l −1 (1.9–14.7, p = 0.014).


2021 ◽  
Vol 10 (8) ◽  
pp. 1664
Author(s):  
Clara Carnicer-Cáceres ◽  
Jose Antonio Arranz-Amo ◽  
Cristina Cea-Arestin ◽  
Maria Camprodon-Gomez ◽  
David Moreno-Martinez ◽  
...  

Fabry disease (FD) is a lysosomal storage disorder caused by deficient alpha-galactosidase A activity in the lysosome due to mutations in the GLA gene, resulting in gradual accumulation of globotriaosylceramide and other derivatives in different tissues. Substrate accumulation promotes different pathogenic mechanisms in which several mediators could be implicated, inducing multiorgan lesions, mainly in the kidney, heart and nervous system, resulting in clinical manifestations of the disease. Enzyme replacement therapy was shown to delay disease progression, mainly if initiated early. However, a diagnosis in the early stages represents a clinical challenge, especially in patients with a non-classic phenotype, which prompts the search for biomarkers that help detect and predict the evolution of the disease. We have reviewed the mediators involved in different pathogenic mechanisms that were studied as potential biomarkers and can be easily incorporated into clinical practice. Some accumulation biomarkers seem to be useful to detect non-classic forms of the disease and could even improve diagnosis of female patients. The combination of such biomarkers with some response biomarkers, may be useful for early detection of organ injury. The incorporation of some biomarkers into clinical practice may increase the capacity of detection compared to that currently obtained with the established diagnostic markers and provide more information on the progression and prognosis of the disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giorgio Spiniello ◽  
Federica Verrillo ◽  
Riccardo Ricciolino ◽  
Dario Prozzo ◽  
Andrea Tuccillo ◽  
...  

Anderson Fabry disease (AFD) is an Xlinked lysosomal storage disorder caused by a deficiency of the lysosomal enzyme, agalactosidase A. The inadequate enzymatic activity leads to systemic storage of glycosphingolipids, mostly globotriaosylceramide, in the lysosomes. As of now, enzyme replacement therapy is the only approved treatment for AFD. However, it does not induce a complete and lasting response in several clinical contexts. Genemediated enzyme replacement is an emerging approach that could overcome these limits. The single gene nature of AFD enhances the possibility to transfect and modify a small number of cells, making them capable to affect the correction of a larger number of cells. This review summarizes the history and the state of the art of gene therapy in AFD, showing potential benefits and limits.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 271
Author(s):  
Ken Kok ◽  
Kimberley C. Zwiers ◽  
Rolf G. Boot ◽  
Hermen S. Overkleeft ◽  
Johannes M. F. G. Aerts ◽  
...  

Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by the deficiency of α-galactosidase A (α-GalA) and the consequent accumulation of toxic metabolites such as globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Early diagnosis and appropriate timely treatment of FD patients are crucial to prevent tissue damage and organ failure which no treatment can reverse. LSDs might profit from four main therapeutic strategies, but hitherto there is no cure. Among the therapeutic possibilities are intravenous administered enzyme replacement therapy (ERT), oral pharmacological chaperone therapy (PCT) or enzyme stabilizers, substrate reduction therapy (SRT) and the more recent gene/RNA therapy. Unfortunately, FD patients can only benefit from ERT and, since 2016, PCT, both always combined with supportive adjunctive and preventive therapies to clinically manage FD-related chronic renal, cardiac and neurological complications. Gene therapy for FD is currently studied and further strategies such as substrate reduction therapy (SRT) and novel PCTs are under investigation. In this review, we discuss the molecular basis of FD, the pathophysiology and diagnostic procedures, together with the current treatments and potential therapeutic avenues that FD patients could benefit from in the future.


2018 ◽  
Vol 7 (11) ◽  
pp. 409 ◽  
Author(s):  
Verdiana Ravarotto ◽  
Francesca Simioni ◽  
Gianni Carraro ◽  
Giovanni Bertoldi ◽  
Elisa Pagnin ◽  
...  

Fabry disease is an X-linked lysosomal storage disease caused by mutations in the GLA gene that lead to a reduction or an absence of the enzyme α-galactosidase A, resulting in the progressive and multisystemic accumulation of globotriaosylceramide. Clinical manifestation varies from mild to severe, depending on the phenotype. The main clinical manifestations are cutaneous (angiokeratomas), neurological (acroparesthesias), gastrointestinal (nausea, diarrhea abdominal pain), renal (proteinuria and kidney failure), cardiovascular (cardiomyopathy and arrhythmias), and cerebrovascular (stroke). A diagnosis of Fabry disease can be made with an enzymatic assay showing absent or reduced α-galactosidase A in male patients, while in heterozygous female patients, molecular genetic testing is needed. Enzyme replacement therapy (ERT) with recombinant human α-galactosidase is nowadays the most-used disease-specific therapeutic option. Despite ERT, cardiocerebrovascular-renal irreversible organ injury occurs, therefore additional knowledge and a deeper understanding of further pathophysiological mechanisms leading to end organ damage in Fabry disease are needed. Recent data point toward oxidative stress, oxidative stress signaling, and inflammation as some such mechanisms. In this short review, the current knowledge on the involvement of oxidative stress in cardiovascular-renal remodeling is summarized and related to the most recent evidence of oxidative stress activation in Fabry disease, and clearly points toward the involvement of oxidative stress in the pathophysiology of the medium- to long-term cardiovascular-renal damage of Fabry disease.


2019 ◽  
Vol 31 (3) ◽  
pp. 197-200
Author(s):  
Letizia Roggero ◽  
Sara Auricchio ◽  
Federico Pieruzzi

Enzyme Replacement Therapy for Fabry Disease Anderson-Fabry disease (FD) is a X-linked lysosomal storage disorder, which involves glycosphingolipids metabolism. Specific treatment for FD has been available in the last two decades, after the development and commercialization of recombinant human alfa-galactosidase A. Since then enzyme replacement therapy (ERT) has changed the natural history of the disease. Two different enzymatic formulations are available: agalsidase alfa and agalsidase beta at different dosages. The safety and efficacy profiles are similar. ERT induces Gb3 deposits reduction in renal and cardiac biopsies, improves quality of life, reduces pain and GI symptoms, decreases left ventricular mass and slows down renal function decline. In case of organ involvement, clinical evidence confirms the need to treat all patients with enzyme therapy, both male and female. In all other clinical settings, the decision to start ERT is controversial, because of the extremely variable clinical manifestations of FD. However, data suggest a greater response to ERT if started as early as possible in any patients. Timely treatment appears to be effective in stabilizing and possibly delaying FD progression. ERT infusion reactions due to allergic hypersensitivity or IgG antibody development could occur but can be easily managed. In-hospital and at home infusions are possible. The wide genetic and phenotypic heterogeneity observed in all FD patients requires a tailored approach to treatment options. Patients should be referred to an expert multidisciplinary team for the long term management of this challenging disease.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Atul Mehta ◽  
Uma Ramaswami ◽  
Joseph Muenzer ◽  
Roberto Giugliani ◽  
Kurt Ullrich ◽  
...  

Abstract Background Lysosomal storage disorders (LSDs) are rare genetic disorders, with heterogeneous clinical manifestations and severity. Treatment options, such as enzyme replacement therapy (ERT), substrate replacement therapy, and pharmacological chaperone therapy, are available for several LSDs, including Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (mucopolysaccharidosis type II [MPS II]). However, patients in some countries face challenges accessing treatments owing to limited availability of locally licensed, approved drugs. Methods The Takeda LSD Charitable access program aims to meet the needs of individuals with GD, FD or MPS II with the greatest overall likelihood of benefit, in selected countries, through donation of ERT to nonprofit organizations, and support for medical capacity-building as well as family support via independent grants. Long-term aims of the program are to establish sustainable healthcare services delivered by local healthcare providers for patients with rare metabolic diseases. Patients receiving treatment through the program are monitored regularly, and their clinical data and progress are reviewed annually by an independent medical expert committee (MEC). The MEC also selects patients for enrollment completely independent from the sponsoring company. Results As of 31 August, 2019, 199 patients from 13 countries were enrolled in the program; 142 with GD, 41 with MPS II, and 16 with FD. Physicians reported improvements in clinical condition for 147 (95%) of 155 patients with follow-up data at 1 year. Conclusions The response rate for follow-up data at 1 year was high, with data collected for > 90% of patients who received ERT through the program showing clinical improvements in the majority of patients. These findings suggest that the program can benefit selected patients previously unable to access disease-specific treatments. Further innovative solutions and efforts are needed to address the challenges and unmet needs of patients with LSDs and other rare diseases around the world.


Sign in / Sign up

Export Citation Format

Share Document