scholarly journals Adaptation to Endoplasmic Reticulum Stress Enhances Resistance of Oral Cancer Cells to Cisplatin by Up-Regulating Polymerase η and Increasing DNA Repair Efficiency

2020 ◽  
Vol 22 (1) ◽  
pp. 355
Author(s):  
Cho-Yi Chen ◽  
Masaoki Kawasumi ◽  
Tien-Yun Lan ◽  
Chi-Lam Poon ◽  
Yi-Sian Lin ◽  
...  

Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Katharina F. Witting ◽  
Monique P.C. Mulder

Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Oanh H. Pham ◽  
Bokyung Lee ◽  
Jasmine Labuda ◽  
A. Marijke Keestra-Gounder ◽  
Mariana X. Byndloss ◽  
...  

ABSTRACT The inflammatory response to Chlamydia infection is likely to be multifactorial and involve a variety of ligand-dependent and -independent recognition pathways. We previously reported the presence of NOD1/NOD2-dependent endoplasmic reticulum (ER) stress-induced inflammation during Chlamydia muridarum infection in vitro, but the relevance of this finding to an in vivo context is unclear. Here, we examined the ER stress response to in vivo Chlamydia infection. The induction of interleukin 6 (IL-6) production after systemic Chlamydia infection correlated with expression of ER stress response genes. Furthermore, when tauroursodeoxycholate (TUDCA) was used to inhibit the ER stress response, an increased bacterial burden was detected, suggesting that ER stress-driven inflammation can contribute to systemic bacterial clearance. Mice lacking both NOD1 and NOD2 or RIP2 exhibited slightly higher systemic bacterial burdens after infection with Chlamydia. Overall, these data suggest a model where RIP2 and NOD1/NOD2 proteins link ER stress responses with the induction of Chlamydia-specific inflammatory responses. IMPORTANCE Understanding the initiation of the inflammatory response during Chlamydia infection is of public health importance given the impact of this disease on young women in the United States. Many young women are chronically infected with Chlamydia but are asymptomatic and therefore do not seek treatment, leaving them at risk of long-term reproductive harm due to inflammation in response to infection. Our manuscript explores the role of the endoplasmic reticulum stress response pathway initiated by an innate receptor in the development of this inflammation.


2020 ◽  
Vol 30 (9) ◽  
pp. 672-675 ◽  
Author(s):  
Kashi Raj Bhattarai ◽  
Manoj Chaudhary ◽  
Hyung-Ryong Kim ◽  
Han-Jung Chae

Author(s):  
Fernanda L.B. Mügge ◽  
Aristóbolo M. Silva

AbstractOver the past decade, a handful of evidence has been provided that nonsteroidal anti-inflammatory drugs (NSAIDs) display effects on the homeostasis of the endoplasmic reticulum (ER). Their uptake into cells will eventually lead to activation or inhibition of key molecules that mediate ER stress responses, raising not only a growing interest for a pharmacological target in ER stress responses but also important questions how the ER-stress mediated effects induced by NSAIDs could be therapeutically advantageous or not. We review here the toxicity effects and therapeutic applications of NSAIDs involving the three majors ER stress arms namely PERK, IRE1, and ATF6. First, we provide brief introduction on the well-established and characterized downstream events mediated by these ER stress players, followed by presentation of the NSAIDs compounds and mode of action, and finally their effects on ER stress response. NSAIDs present promising drug agents targeting the components of ER stress in different aspects of cancer and other diseases, but a better comprehension of the mechanisms underlying their benefits and harms will certainly pave the road for several diseases’ therapy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3618-3618
Author(s):  
Nimrat Chatterjee ◽  
Christopher Lee Williams ◽  
Saleh Bhar ◽  
Alison A Bertuch

Abstract Shwachman-Diamond syndrome (SDS), an autosomal recessive disorder, is characterized by bone marrow dysfunction, exocrine pancreatic insufficiency, congenital abnormalities, and leukemia predisposition (Myers et al., 2012). Most patients with SDS harbor biallelic mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. SBDS is known to play a role in ribosome biogenesis by enabling eviction of the ribosome anti-association factor eIF6 from the 60S ribosomal subunit, to allow formation of the 80S ribosome (Wong et al., 2011). SBDS-depleted cells are, therefore, defective in ribosome assembly. In addition, absence of SBDS sensitizes cells to ultraviolet irradiation, translation inhibitors, and endoplasmic reticulum (ER) stressors, such as tunicamycin (Ball et al., 2009). A recent report indicated that lymphoblastoid cell lines (LCLs) derived from two SDS patients accumulated more DNA damage after being exposed to ionizing radiation (IR) (Morini et al., 2015). A deficiency in DNA repair was alluded to as a possible cause, however, the mechanism underlying this previously unreported phenotype was not determined. In this study, we investigated LCLs derived from five SDS patients with biallelic SBDS mutations and found all to be hypersensitive to IR in a colony survival assay. In this assay, increasing doses of IR resulted in a significantly lower survival fraction in SDS-compared to control-LCLs. We found SBDS expression to increase in control-cells when stressed with IR, suggesting that SBDS is a stress response protein and its absence in SDS-LCLs induces hypersensitivity to IR. Because knockdown of SBDS in HEK293 cells induces an ER stress response (Ball et al., 2009), we examined the expression of the ER stress response factor phospho-eIF2α in untreated and IR exposed SDS-LCLs and found phospho-eIF2α expression to be markedly increased compared to controls. This result indicated that SDS-LCLs may have an activated ER stress response, as was further confirmed by exposing these cells to additional ER stressors, tunicamycin and H2O2, and observing a similar upregulation of phospho-eIF2α. Because ER stress is known to suppress DNA double strand break (DSBR) (Yamamori et al., 2013), we examined the expression of Rad51 and Ku70, which are required for the homology-directed and nonhomologous end-joining pathways of DSBR, respectively. Surprisingly, we found Rad51 and Ku70 protein levels to be repressed in SDS-LCLs compared to controls, both with and without exposure to IR. Collectively, these data support the hypothesis that, in addition to its role in ribosome biogenesis, SBDS is a stress response protein that plays an important role in regulating the ER stress response. In SDS-cells, where SBDS is lacking, activated ER stress represses DNA repair proteins rendering cells hypersensitive to IR and other stresses. This novel pathway to ER stress induction may contribute to the bone marrow failure and cancer predisposition seen in SDS patients. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 283 (25) ◽  
pp. 17020-17029 ◽  
Author(s):  
Yukihiro Yamaguchi ◽  
Dennis Larkin ◽  
Roberto Lara-Lemus ◽  
Jose Ramos-Castañeda ◽  
Ming Liu ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ken-ichiro Tanaka ◽  
Misato Kasai ◽  
Mikako Shimoda ◽  
Ayane Shimizu ◽  
Maho Kubota ◽  
...  

Trace metals such as zinc (Zn), copper (Cu), and nickel (Ni) play important roles in various physiological functions such as immunity, cell division, and protein synthesis in a wide variety of species. However, excessive amounts of these trace metals cause disorders in various tissues of the central nervous system, respiratory system, and other vital organs. Our previous analysis focusing on neurotoxicity resulting from interactions between Zn and Cu revealed that Cu2+ markedly enhances Zn2+-induced neuronal cell death by activating oxidative stress and the endoplasmic reticulum (ER) stress response. However, neurotoxicity arising from interactions between zinc and metals other than copper has not been examined. Thus, in the current study, we examined the effect of Ni2+ on Zn2+-induced neurotoxicity. Initially, we found that nontoxic concentrations (0–60 μM) of Ni2+ enhance Zn2+-induced neurotoxicity in an immortalized hypothalamic neuronal cell line (GT1-7) in a dose-dependent manner. Next, we analyzed the mechanism enhancing neuronal cell death, focusing on the ER stress response. Our results revealed that Ni2+ treatment significantly primed the Zn2+-induced ER stress response, especially expression of the CCAAT-enhancer-binding protein homologous protein (CHOP). Finally, we examined the effect of carnosine (an endogenous peptide) on Ni2+/Zn2+-induced neurotoxicity and found that carnosine attenuated Ni2+/Zn2+-induced neuronal cell death and ER stress occurring before cell death. Based on our results, Ni2+ treatment significantly enhances Zn2+-induced neuronal cell death by priming the ER stress response. Thus, compounds that decrease the ER stress response, such as carnosine, may be beneficial for neurological diseases.


Sign in / Sign up

Export Citation Format

Share Document