scholarly journals Cardiac Oxidative Signaling and Physiological Hypertrophy in the Na/K-ATPase α1s/sα2s/s Mouse Model of High Affinity for Cardiotonic Steroids

2021 ◽  
Vol 22 (7) ◽  
pp. 3462
Author(s):  
Pauline V. Marck ◽  
Marco T. Pessoa ◽  
Yunhui Xu ◽  
Laura C. Kutz ◽  
Dominic M. Collins ◽  
...  

The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2, and β1 protein content remained unchanged, and the cardiac Na/K-ATPase dose–response curve to ouabain shifted to the left as expected. In males aged 3–6 months, increased α1 sensitivity to CTS resulted in a significant increase in cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio accompanied by an increase in the myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Georgios Kararigas ◽  
Ba Tiep Nguyen ◽  
Hubertus Jarry ◽  
Vera Regitz-Zagrosek

Estradiol-17beta (E2) has been shown to exert anti-hypertrophic actions by either attenuating or blunting the development of left ventricular hypertrophy. However, the vast majority of these studies have been performed in stressed or diseased hearts. Consequently, very little is known about the actions of E2 in the stress- and disease-free heart. The aim of our study was to identify and characterize structurally and molecularly the role of E2 in the healthy heart. Female C57Bl/6J mice were ovariectomized at the age of two months. Mice were randomly assigned into groups feeding on either an E2-containing (n = 19) or soy-free (Ctrl; n = 19) diet for three months. Following this, all mice were sacrificed and hearts were collected for weight measurement. Left ventricles were analyzed structurally by immunohistochemistry and molecularly by genome-wide expression profiling. E2 led to an increase in the heart weight (11%; P < 0.001) and the heart-to-body weight ratio (32%; P < 0.001) compared to Ctrl mice. Cardiomyocyte cross-sectional area revealed cardiomyocyte hypertrophy in E2 (n = 6) compared to Ctrl (n = 5) mice (32%; P = 0.004). Analysis of the left ventricular transcriptome identified 1059 probe sets (adjusted P ≤ 0.05) differentially expressed between E2 (n = 5) and Ctrl (n = 5). Hypergeometric testing for Gene Ontology showed most genes to be associated with cell cycle, regulation of growth, cell and tissue development. Pathway analysis revealed 140 pathways (adjusted P = 0.05) modulated between the two groups, such as the DNA replication and Wnt signaling pathways. Next, we tested the hypothesis that this hypertrophic effect of E2 is of the physiological type. To this extent, we identified that angiogenesis was increased with cardiac growth as determined by the microarray analysis and VEGF-A protein levels assessed by Western blotting. Furthermore, the embryonic gene program was not activated and no fibrosis was observed in the E2-treated group. In conclusion, our study is the first to demonstrate pro-hypertrophic actions of E2 in the healthy heart through the modulation of growth-related genes and pathways. Due to that we have characterized the hypertrophic effect of E2 as physiological, we expect this effect to be beneficial for the heart.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Marcus Tjeerdsma ◽  
Levi Froke ◽  
Jessica Freeling ◽  
Scott Pattison

Introduction: Macroautophagy is a process of bulk protein degradation. Our prior work showed that Atg7 expression is sufficient to induce autophagic flux in vitro and in vivo . When Atg7 was co-expressed with CryAB R120G in the heart, cardiac hypertrophy was blunted in heart weight/body weight ratios and fetal gene expression markers. To determine if Atg7 expression is sufficient to limit hypertrophic growth in another model, we tested the effects of Atg7 overexpression with phenylephrine-induced hypertrophy both in vitro and in vivo . Hypothesis: Atg7 will blunt the hypertrophic effects of phenylephrine. Methods: Rat neonatal cardiomyocytes were infected with adenoviruses expressing either LacZ or Atg7 and treated with phenylephrine to induce cardiomyocytes hypertrophy. Osmotic pumps were surgically implanted into control mice and mice with cardiac-specific expression of Atg7 to infuse phenylephrine (PE) or vehicle (saline) for four weeks. Results: PE treatment significantly increased neonatal cardiomyocyte areas in LacZ-expressing cells, while Atg7-expressing cardiomyocytes showed no growth. In mice, all genotypes responded to PE treatment with significantly increased heart weight/body weight ratios and increased fiber size. However, Atg7-expressing hearts differed significantly from control hearts in normalized heart mass following PE delivery. Vehicle treated Atg7-expressing hearts had 17% smaller myofiber cross-sectional areas than those from control genotypes and had a reduced hypertrophic response to PE, relative to controls. Echocardiography showed that Atg7-expressing hearts had significantly elevated cardiac function (% fractional shortening) prior to and throughout the experiment over control hearts (33% vs. 29%). PE significantly increased fractional shortening) from 29% to 36% in control hearts, but failed to significantly elevate cardiac function in Atg7-expressing hearts further (33% vs 35%). Additional assays are underway to understand the Atg7-dependent adaptations to PE. Conclusion: Atg7 expression yields modestly smaller hearts with enhanced cardiac function which may protect them from hypertrophic stresses like phenylephrine.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jaetaek Kim ◽  
Adam R Wende ◽  
Crystal Sloan ◽  
Benjamin E Wayment ◽  
Sheldon E Litwin ◽  
...  

Insulin-like growth factor 1 (IGF-1) and IGF-1 receptors are expressed in murine hearts, and IGF-1 receptor signaling in cardiac muscle has been proposed to play a role in growth, differentiation, and cell survival, but mechanisms by which IGF-1 modulates myocardial structure and function are only partially understood. To investigate the role of IGF-1 signaling on cardiac development and physiology, we generated mice with cardiomyocyte-restricted knockout of the IGF-1receptor (IGF-1R −/−) by crossing α-MHC-Cre mice with mice containing a floxed exon 3 of the IGF-1R gene. Ablation of IGF-1 receptors in cardiomyocytes did not alter baseline heart weight to tibia length (HW/TL) ratios at 8 weeks or 12 weeks of age. However, wheat germ agglutinin (WGA-FITC) staining revealed that myocyte cross-sectional area was reduced by 18.8% (P < 0.05). To define the contribution of IGF-1 receptor signaling in the development of physiological hypertrophy; mice [WT (n = 7) or IGF-1R −/− (n = 9)] were subjected to 4 weeks swim (Sw) training and compared with Sedentary (Sed) wild type (WT) (n = 5) or IGF-1R −/− (n = 7) mice. HW/TL ratios increased by 19.2% in WT animals after swim training (5.19 ± 0.26 vs. 6.18 ± 0.2, P < 0.05), but only by 5.5% in Sw IGF-1R −/− mice (5.58 ± 0.18 vs. 5.89 ± 0.22, P = 0.32) and the fold increase in HW/TL was significantly greater in Sw WT vs. Sw IGF-1R −/− (P < 0.05). Despite resistance to hypertrophy, cardiac systolic function assessed by ejection fraction was preserved in Sw IGF-1R −/− (before Sw 0.71 ± 0.02 vs. after Sw 0.67 ± 0.02, P = 0.12). Phosphorylation of Akt was significantly increased in both trained WT and IGF-1R−/− mice at Ser473 [fold-change 1.61 ± 0.09 (P < 0.05) and 2.11 ± 0.19 (P < 0.01), respectively] and Thr308 [2.42 ± 0.24 and 2.61 ± 0.59 (P < 0.01), respectively] vs. Sed. Surprisingly Ser (473) Akt phosphorylation was greater in Sw IGF-1R−/− vs. Sw WT (P < 0.05). These data define an essential role for IGF-1 signaling in mediating physiologic cardiomyocyte hypertrophy, and indicate that although Akt signaling might be necessary for mediating physiological cardiac hypertrophy it is not sufficient in the absence of myocardial IGF-1R signaling.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Robert M Blanton ◽  
James P Mendoza ◽  
Mark Aronovitz ◽  
David A Kass ◽  
Michael E Mendelsohn ◽  
...  

Objectives: We and others previously demonstrated that activation of the NO-cGMP-Protein Kinase G (PKG) pathway inhibits cardiac hypertrophy and remodeling in vivo. However, it remains untested whether PKG specifically in the cardiac myocyte (CM) mediates these effects. We therefore tested the hypothesis that PKGIα inhibits pathologic cardiac hypertrophy through a specific role in the CM. Methods and Results: We created and characterized mice with CM-restricted excision of PKGIα. Mice were generated in which the PKGI exon 1 (specific for the Iα isoform) was flanked by loxP sites. We crossed these PKGIα fl/fl mice with αMHC-Cre mice which constitutively express Cre recombinase selectively in the CM. The resultant PKGIα fl/fl / αMHC-Cre+/- mice were compared with PKGIα fl/fl / αMHC-Cre-/- littermate controls (termed PKG CMKO and Ctrl, respectively). By age 3 months (n=5 per genotype), male PKG CMKO mice developed atrial and LV hypertrophy compared with Ctrl littermates PKG CMKO atrial weight/tibia length 0.33 ± 0.03 mg/mm vs 0.22 ± .01 in Ctrl, P <0.05; PKG CMKO LV/TL 5.0 ± 0.2 mg/mm vs 4.1 ± 0.4 in Ctrl, P <0.05). LV CM cross sectional area also increased in the 3 month old PKG CMKO mice (9445 ± 282 pixels PKG CMKO vs 8273 ± 213 in Ctrl, n>400 cells/genotype, 5 hearts per genotype; P <0.001). The systolic index end systolic elastance was decreased in 3 month old PKG CMKO mice (PKG CMKO 3.1 ± 0.4 mmHg/μ l vs 6.1 ± 1.0 in Ctrl-; P <0.05). Importantly, blood pressure did not differ between genotypes. By age 6 months, PKG CMKO mice developed early mortality (3 of 4 PKG CMKO males died at 6 months of age vs 0 of 4 Ctrl males). Total heart and atrial weights of male mice (n=3 PKG CMKO , 4 Ctrl) increased in PKG CMKO mice (heart weight/tibia length 10.8 ± 1.7 mg/mm in PKG CMKO vs 7.1 ± 0.6 in Ctrl; P <0.05; atrial weight/tibia length 2.3 ± 1.1 mg/mm in PKG CMKO vs 0.30 ± 0.1 Ctrl, P <0.05). LV fractional shortening percentage, recorded at 6 months age, trended lower in the PKG CMKO mice as well (35 ± 3% PKG CMKO vs 44 ± 4% Ctrl, P 0.09). Conclusions: These data provide the first evidence that PKGIα functions in the CM as a tonic inhibitor of age-dependent pathologic hypertrophy, supporting further study of PKGIα as a therapeutic target in the prevention and treatment of LV remodeling and congestive heart failure.


2009 ◽  
Vol 107 (6) ◽  
pp. 1710-1721 ◽  
Author(s):  
Le-Jian Lin ◽  
Fang Gao ◽  
Yun-Gang Bai ◽  
Jun-Xiang Bao ◽  
Xiao-Feng Huang ◽  
...  

This study was designed to test the hypothesis that a 28-day tail suspension (SUS) could induce hypertrophy and enhanced myogenic and vasoconstrictor reactivity in middle cerebral arteries (MCAs), whereas atrophy and decreased myogenic and vasoconstrictor responses in mesenteric third-order arterioles (MSAs). Also, in addition to the functional enhancement in MCAs, structural changes in both kinds of arteries and functional decrement in MSAs could all be prevented by the intervention of daily 1-h dorsoventral (−Gx) gravitation by restoring to standing posture. To test this hypothesis, vessel diameters to pressure alterations and nonreceptor- and receptor-mediated agonists were determined using a pressure arteriograph with a procedure to measure in vivo length and decrease hysteresis of vessel segments and longitudinal middlemost sections of vessels fixed at maximally dilated state were examined using electron microscopy and histomorphometry. Functional studies showed that 28-day tail-suspended, head-down tilt (SUS) resulted in enhanced and decreased myogenic tone and vasoconstrictor responses, respectively, in MCAs and MSAs. Histomorphometric data revealed that SUS-induced hypertrophic changes in MCAs characterized by increases in thickness (T) and cross-sectional area (CSA) of the media and the number of vascular smooth-muscle-cell layers (NCL), whereas in MSAs, it induced decreases in medial CSA and T and NCL. Daily 1-h −Gx over 28 days can fully prevent these differential structural changes in both kinds of small arteries and the functional decrement in MSAs, but not the augmented myogenic tone and increased vasoreactivity in the MCAs. These findings have revealed special features of small resistance arteries during adaptation to microgravity with and without gravity-based countermeasure.


2017 ◽  
Vol 24 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Anna Klingseisen ◽  
David A. Lyons

Approximately half of the human brain consists of myelinated axons. Central nervous system (CNS) myelin is made by oligodendrocytes and is essential for nervous system formation, health, and function. Once thought simply as a static insulator that facilitated rapid impulse conduction, myelin is now known to be made and remodeled in to adult life. Oligodendrocytes have a remarkable capacity to differentiate by default, but many aspects of their development can be influenced by axons. However, how axons and oligodendrocytes interact and cooperate to regulate myelination in the CNS remains unclear. Here, we review recent advances in our understanding of how such interactions generate the complexity of myelination known to exist in vivo. We highlight intriguing results that indicate that the cross-sectional size of an axon alone may regulate myelination to a surprising degree. We also review new studies, which have highlighted diversity in the myelination of axons of different neuronal subtypes and circuits, and structure-function relationships, which suggest that myelinated axons can be exquisitely fine-tuned to mediate precise conduction needs. We also discuss recent advances in our understanding of how neuronal activity regulates CNS myelination, and aim to provide an integrated overview of how axon-oligodendrocyte interactions sculpt neuronal circuit structure and function.


2018 ◽  
Author(s):  
Andreas Schuh ◽  
Antonios Makropoulos ◽  
Emma C. Robinson ◽  
Lucilio Cordero-Grande ◽  
Emer Hughes ◽  
...  

AbstractPremature birth increases the risk of developing neurocognitive and neurobe-havioural disorders. The mechanisms of altered brain development causing these disorders are yet unknown. Studying the morphology and function of the brain during maturation provides us not only with a better understanding of normal development, but may help us to identify causes of abnormal development and their consequences. A particular difficulty is to distinguish abnormal patterns of neurodevelopment from normal variation. The Developing Human Connectome Project (dHCP) seeks to create a detailed four-dimensional (4D) connectome of early life. This connectome may provide insights into normal as well as abnormal patterns of brain development. As part of this project, more than a thousand healthy fetal and neonatal brains will be scanned in vivo. This requires computational methods which scale well to larger data sets. We propose a novel groupwise method for the construction of a spatio-temporal model of mean morphology from cross-sectional brain scans at different gestational ages. This model scales linearly with the number of images and thus improves upon methods used to build existing public neonatal atlases, which derive correspondence between all pairs of images. By jointly estimating mean shape and longitudinal change, the atlas created with our method overcomes temporal inconsistencies, which are encountered when mean shape and intensity images are constructed separately for each time point. Using this approach, we have constructed a spatio-temporal atlas from 275 healthy neonates between 35 and 44 weeks post-menstrual age (PMA). The resulting atlas qualitatively preserves cortical details significantly better than publicly available atlases. This is moreover confirmed by a number of quantitative measures of the quality of the spatial normalisation and sharpness of the resulting template brain images.


Author(s):  
Kate L. Weeks ◽  
Yow Keat Tham ◽  
Suzan G. Yildiz ◽  
Yonali Alexander ◽  
Daniel G. Donner ◽  
...  

The insulin-like growth factor 1 receptor (IGF1R) and phosphoinositide 3-kinase p110a (PI3K) are critical regulators of exercise-induced physiological cardiac hypertrophy, and provide protection in experimental models of pathological remodeling and heart failure. Forkhead box class O1 (FoxO1) is a transcription factor which regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K activation in vitro, but its role in physiological hypertrophy in vivo was unknown. We generated cardiomyocyte-specific FoxO1 knockout (cKO) mice and assessed the phenotype under basal conditions and settings of physiological hypertrophy induced by 1) swim training, or 2) cardiac-specific transgenic expression of constitutively active PI3K (caPI3KTg+). Under basal conditions, male and female cKO mice displayed mild interstitial fibrosis compared with control (CON) littermates, but no other signs of cardiac pathology were present. In response to exercise training, female CON mice displayed an increase (~21%) in heart weight normalized to tibia length vs untrained mice. Exercise-induced hypertrophy was blunted in cKO mice. Exercise increased cardiac Akt phosphorylation and IGF1R expression, but was comparable between genotypes. However, differences in Foxo3a, Hsp70 and autophagy markers were identified in hearts of exercised cKO mice. Deletion of FoxO1 did not reduce cardiac hypertrophy in male or female caPI3KTg+ mice. Cardiac Akt and FoxO1 protein expression were significantly reduced in hearts of caPI3KTg+ mice, which may represent a negative feedback mechanism from chronic caPI3K, and negate any further effect of reducing FoxO1 in the cKO. In summary, FoxO1 contributes to exercise-induced hypertrophy. This has important implications when considering FoxO1 as a target for treating the diseased heart.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Georgios Kararigas ◽  
Laura C Zelarayan ◽  
Karl Toischer ◽  
Gerd Hasenfuss ◽  
Hubertus Jarry ◽  
...  

The steroid hormone 17β-estradiol (E2) regulates several biological processes. In contrast to its anti-hypertrophic effects under pressure overload, we recently found that E2 induced physiological hypertrophic growth in healthy C57Bl/6J mice but not C57Bl/6N mice. Here, we aimed at the characterization of the effects of E2 in C57Bl/6N mice and tested the hypothesis that β-catenin mediates these E2 effects. Following ovariectomy, 2-month-old C57Bl/6N wild-type and cardiac-specific β-catenin-deleted (β-cat Δex2-6 ) mice were randomized to an E2-containing or soy-free (control, CON) diet ( n = 7-13/group). Cardiac function was examined by echocardiography following established procedures. The 3-month physiological dose of E2 led to a higher relative uterus weight compared with CON ( P < 0.001) in both WT and β-cat Δex2-6 mice. The relative heart weight was significantly reduced by E2 compared with CON in WT mice ( P < 0.001), while there was no significant effect in β-cat Δex2-6 mice. Cardiomyocyte cross-sectional area was also significantly decreased by E2 ( n = 5-7/group; P < 0.001) compared with CON in WT mice, while there was no significant effect in β-cat Δex2-6 mice. Echocardiography revealed a significant decrease in septum width ( P < 0.001) and posterior wall thickness ( P < 0.01) in E2 treated WT mice compared with CON, while there was no significant effect in β-cat Δex2-6 mice ( n = 8/group). These E2-induced structural changes in WT mice were accompanied by a significant decrease in cardiac function, namely a 23% decrease in fractional shortening compared with CON ( P < 0.05), while there was no significant effect in β-cat Δex2-6 mice. Immunoblotting revealed a significant increase in the levels of the ubiquitin ligase and key regulator of proteasome-dependent protein degradation muscle-specific RING finger protein 1 (MuRF1) by E2 compared with CON in WT mice ( P < 0.05), while there was no significant effect in β-cat Δex2-6 mice. Although we hypothesized increased autophagic activity, we found no effect on the autophagy-related protein LC3 in WT or β-cat Δex2-6 mice. In conclusion, our surprising findings show that E2 leads to cardiac atrophy and dysfunction in C57Bl/6N mice via a β-catenin mechanism seemingly in an autophagy-independent manner.


2013 ◽  
Vol 210 (8) ◽  
pp. 1635-1646 ◽  
Author(s):  
Alberto Pinzon-Charry ◽  
Tonia Woodberry ◽  
Vivian Kienzle ◽  
Virginia McPhun ◽  
Gabriela Minigo ◽  
...  

Malaria causes significant morbidity worldwide and a vaccine is urgently required. Plasmodium infection causes considerable immune dysregulation, and elicitation of vaccine immunity remains challenging. Given the central role of dendritic cells (DCs) in initiating immunity, understanding their biology during malaria will improve vaccination outcomes. Circulating DCs are particularly important, as they shape immune responses in vivo and reflect the functional status of other subpopulations. We performed cross-sectional and longitudinal assessments of the frequency, phenotype, and function of circulating DC in 67 Papuan adults during acute uncomplicated P. falciparum, P. vivax, and convalescent P. falciparum infections. We demonstrate that malaria patients display a significant reduction in circulating DC numbers and the concurrent accumulation of immature cells. Such alteration is associated with marked levels of spontaneous apoptosis and impairment in the ability of DC to mature, capture, and present antigens to T cells. Interestingly, sustained levels of plasma IL-10 were observed in patients with acute infection and were implicated in the induction of DC apoptosis. DC apoptosis was reversed upon IL-10 blockade, and DC function recovered when IL-10 levels returned to baseline by convalescence. Our data provide key information on the mechanisms behind DC suppression during malaria and will assist in developing strategies to better harness DC’s immunotherapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document