scholarly journals Generation of a Novel Transgenic Zebrafish for Studying Adipocyte Development and Metabolic Control

2021 ◽  
Vol 22 (8) ◽  
pp. 3994
Author(s):  
Yousheng Mao ◽  
Kwang-Heum Hong ◽  
Weifang Liao ◽  
Li Li ◽  
Seong-Jin Kim ◽  
...  

Zebrafish have become a popular animal model for studying various biological processes and human diseases. The metabolic pathways and players conserved among zebrafish and mammals facilitate the use of zebrafish to understand the pathological mechanisms underlying various metabolic disorders in humans. Adipocytes play an important role in metabolic homeostasis, and zebrafish adipocytes have been characterized. However, a versatile and reliable zebrafish model for long-term monitoring of adipose tissues has not been reported. In this study, we generated stable transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) in adipocytes. The transgenic zebrafish harbored adipose tissues that could be detected using GFP fluorescence and the morphology of single adipocyte could be investigated in vivo. In addition, we demonstrated the applicability of this model to the long-term in vivo imaging of adipose tissue development and regulation based on nutrition. The transgenic zebrafish established in this study may serve as an excellent tool to advance the characterization of white adipose tissue in zebrafish, thereby aiding the development of therapeutic interventions to treat metabolic diseases in humans.

Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Enid Yi Ni Lam ◽  
Christopher J. Hall ◽  
Philip S. Crosier ◽  
Kathryn E. Crosier ◽  
Maria Vega Flores

Abstract Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1953-1960 ◽  
Author(s):  
M.C. Halloran ◽  
M. Sato-Maeda ◽  
J.T. Warren ◽  
F. Su ◽  
Z. Lele ◽  
...  

Over the past few years, a number of studies have described the generation of transgenic lines of zebrafish in which expression of reporters was driven by a variety of promoters. These lines opened up the real possibility that transgenics could be used to complement the genetic analysis of zebrafish development. Transgenic lines in which the expression of genes can be regulated both in space and time would be especially useful. Therefore, we have cloned the zebrafish promoter for the inducible hsp70 gene and made stable transgenic lines of zebrafish that express the reporter green fluorescent protein gene under the control of a hsp70 promoter. At normal temperatures, green fluorescent protein is not detectable in transgenic embryos with the exception of the lens, but is robustly expressed throughout the embryo following an increase in ambient temperature. Furthermore, we have taken advantage of the accessibility and optical clarity of the embryos to express green fluorescent protein in individual cells by focussing a sublethal laser microbeam onto them. The targeted cells appear to develop normally: cells migrate normally, neurons project axons that follow normal pathways, and progenitor cells divide and give rise to normal progeny cells. By generating other transgenic lines in which the hsp70 promoter regulates genes of interest, it should be possible to examine the in vivo activity of the gene products by laser-inducing specific cells to express them in zebrafish embryos. As a first test, we laser-induced single muscle cells to make zebrafish Sema3A1, a semaphorin that is repulsive for specific growth cones, in a hsp70-sema3A1 transgenic line of zebrafish and found that extension by the motor axons was retarded by the induced muscle.


2019 ◽  
Vol 208 (3-4) ◽  
pp. 148-157
Author(s):  
Tao Luo ◽  
Xueqin Yang ◽  
Yan Sun ◽  
Xinqi Huang ◽  
Ling Zou ◽  
...  

Osteogenic differentiation of human adipose tissue-derived stem cells (hASCs) is a complex process that is regulated by multiple factors, including microRNAs (miRNAs). The miRNA miR-20a was shown to promote bone formation from bone marrow-derived mesenchymal stem cells. However, the role of miR-20a in osteogenic differentiation of hASCs remains unclear. In this study, we systematically evaluated the function of miR-20a in regulating hASC osteogenesis in vitro. hASCs were transduced with miR-20a-overexpressing and miR-20a-sponge lentiviral vectors, with green fluorescent protein (GFP) as a control. The results showed that miR-20a transcription was upregulated after hASC mineralization. Compared with the miR-20a-sponge, GFP, and hASC groups, the miR-20a-overexpressing group showed higher alkaline phosphatase (ALP) activity on days 7 and 14. Moreover, the mRNA level of ALP increased significantly in the miR-20a-overexpressing group on day 14. Furthermore, the protein of the target gene PPARγ was decreased, and the osteogenic differentiation-associated proteins ALP, osteocalcin, and RUNX2 were upregulated. hASCs anchored to HA/β-TCP revealed a healthy polygonal morphology and developed cytoplasmic extensions. miR-20a promoted osteogenic differentiation of the cell scaffold. Taken together, these data ­confirm that miRNA-20a promotes the osteogenesis of hASCs in vitro, and its essential role in vivo needs further ­investigation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1638-1638
Author(s):  
Corey Filiaggi ◽  
Adam P Deveau ◽  
Sergey Prykhozhij ◽  
Graham Dellaire ◽  
Jason N. Berman

Abstract The NUP98-NSD1 (NND1) translocation is a fusion oncogene recently identified in pediatric acute myeloid leukemia (AML), where it occurs in approximately 16% of patients. NND1 predicts a dismal prognosis, with a 4-year event-free survival <10%. The mechanism of action of NND1 may be through the activation of the posterior homeobox gene, HOXA9. NND1 patients often harbour an internal tandem duplication of fms-like tyrosine kinase 3 (FLT3-ITD), another genetic lesion associated with poor prognosis. Co-expression of NND1 and FLT3-ITD results in worse survival than either aberration in isolation. NND1 may be sufficient to produce a myeloproliferative phenotype, but the interaction with FLT3-ITD activates essential downstream signaling pathways necessary for AML pathogenesis. A better understanding of the mechanisms by which NND1 dysregulates hematopoiesis and interacts with FLT3-ITD is fundamental to developing targeted therapies to improve the outcome in this disease. The zebrafish has been established as a robust and reliable model of hematologic malignancies, with conserved genetics and ease of genetic interrogation. Our group previously generated a transgenic zebrafish model expressing the related fusion oncogene, NUP98-HOXA9, in which embryos had anemia and expansion of myeloid cells, and adult fish exhibited a myeloproliferative neoplasm (MPN). Using this model, we discovered novel downstream epigenetic regulators that could be targeted therapeutically and restore normal embryonic hematopoiesis. Moreover, the up-regulated genes that we identified correlated with features of high-risk AML in human datasets, highlighting the translational relevance of this human disease model and justifying the employment of this approach to investigate NND1-driven AML (Deveau et al, Leukemia 2015). Plasmid constructs have been generated that incorporate human NND1 into the zebrafish using the Tol2 system, with detection by green fluorescent protein (GFP) expression. Injection of CMV-NND1-sGFP revealed strong GFP expression from 24-48 hours post fertilization (hpf) ubiquitously and in hematopoietic cells. Whole-mount in situ hybridization experiments of plasmid-injected embryos have shown that, similar to the NUP98-HOXA9 model, embryos expressing NND1 develop a pre-leukemic state, with a decrease in red blood cell marker expression (gata1) and an increase in myeloid marker expression (l-plastin). Currently no animal models exist for NND1 AML. Our initial studies have revealed a myeloproliferative phenotype in zebrafish embryos, providing an in vivo tool for further genetic and epigenetic interrogation, as well as a preclinical platform for novel drug discovery in this disease. Disclosures No relevant conflicts of interest to declare.


2003 ◽  
Vol 17 (5) ◽  
pp. 959-966 ◽  
Author(s):  
Ning-Ai Liu ◽  
Haigen Huang ◽  
Zhongan Yang ◽  
Wiebke Herzog ◽  
Matthias Hammerschmidt ◽  
...  

Abstract We characterized zebrafish proopiomelanocortin (POMC) gene promoter, and sequence analysis revealed that the promoter contains regulatory elements conserved among vertebrate species. To monitor the ontogeny of the pituitary POMC lineage in living vertebrates, we generated transgenic zebrafish expressing green fluorescent protein (GFP) driven by the POMC promoter. Zebrafish POMC-GFP is first expressed asymmetrically as two bilateral groups of cells most anterior to the neural ridge midline at 18–20 h post fertilization (hpf). POMC-GFP-positive cells then fuse into a single-cell mass within the pituitary anlage after 24 hpf and subsequently organize as distinct anterior and posterior domains between 48 and 64 hpf. Immunohistochemical studies with ACTH and αMSH antisera showed that POMC-GFP was mainly targeted to both anterior and posterior pituitary corticotrophs, whereas posterior pituitary region melanotrophs did not express GFP. To determine in vivo zebrafish corticotroph responses, dexamethasone (10−5m) was added to live embryos, which selectively suppressed POMC-GFP expression in the anterior group of corticotrophs, suggesting a distinct domain that is responsive to glucocorticoid feedback. Transgenic zebrafish with specific POMC-GFP expression in pituitary corticotrophs offers a powerful genetic system for in vivo study of vertebrate corticotroph lineage development.


2009 ◽  
Vol 37 (4) ◽  
pp. 830-837 ◽  
Author(s):  
Jane S. Martin ◽  
Stephen A. Renshaw

Neutrophilic inflammation in the lung protects against infectious disease, and usually resolves spontaneously after removal of the inflammatory stimulus. However, much lung disease is caused by a failure of resolution of neutrophilic inflammation. Our laboratory is seeking an understanding of the biochemical basis of inflammation resolution, using the zebrafish model system. Zebrafish larvae are transparent, allowing visualization of GFP (green fluorescent protein)-labelled leucocytes during inflammation in vivo, and they can be readily manipulated by a range of forward and reverse genetic techniques. This combination of advantages makes zebrafish a powerful tool for the study of in vivo inflammatory processes. Using this model, we have visualized the process of inflammation resolution in vivo, and identified a role for apoptosis in this process. In addition, we have performed a forward genetic screen for mutants with defective resolution of inflammation, and reverse genetic experiments examining the influence of candidate genes on inflammation resolution. We have established a platform for screening for compounds with anti-inflammatory activity, which has yielded a number of interesting leads. Looking forward to succeed in the future, we are working at combining mutants, transgenes and pharmacological agents to dissect the biochemical basis of inflammation resolution, and to identify compounds that might be used to treat patients with respiratory disease.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xu-fei Du ◽  
Bing Xu ◽  
Yu Zhang ◽  
Min-jia Chen ◽  
Jiu-lin Du

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 95
Author(s):  
Jeng-Wei Lu ◽  
Liang-In Lin ◽  
Yuxi Sun ◽  
Dong Liu ◽  
Zhiyuan Gong

The poor prognosis of patients diagnosed with hepatocellular carcinoma (HCC) is directly associated with the multi-step process of tumor metastasis. TWIST1, a basic helix-loop-helix (bHLH) transcription factor, is the most important epithelial-mesenchymal transition (EMT) gene involved in embryonic development, tumor progression, and metastasis. However, the role that TWIST1 gene plays in the process of liver tumor metastasis in vivo is still not well understood. Zebrafish can serve as a powerful model for cancer research. Thus, in this study, we crossed twist1a+ and kras+ transgenic zebrafish, which, respectively, express hepatocyte-specific mCherry and enhanced green fluorescent protein (EGFP); they also drive overexpression of their respective transcription factors. This was found to exacerbate the development of metastatic HCC. Fluorescence of mCherry and EGFP-labeled hepatocytes revealed that approximately 37.5% to 45.5% of the twist1a+/kras+ double transgenic zebrafish exhibited spontaneous tumor metastasis from the liver to the abdomen and tail areas, respectively. We also investigated the inflammatory effects of lipopolysaccharides (LPS) on the hepatocyte-specific co-expression of twist1a+ and kras+ in double transgenic zebrafish. Following LPS exposure, co-expression of twist1a+ and kras+ was found to increase tumor metastasis by 57.8%, likely due to crosstalk with the EMT pathway. Our results confirm that twist1a and kras are important mediators in the development of metastatic HCC. Taken together, our in-vivo model demonstrated that co-expression of twist1a+/kras+ in conjunction with exposure to LPS enhanced metastatic HCC offers a useful platform for the study of tumor initiation and metastasis in liver cancer.


2018 ◽  
Vol 5 (2) ◽  
pp. 42-49
Author(s):  
M. N. Yurova ◽  
D. R. Safina ◽  
I. V. Mizgirev

Background.Therapy with compounds potentially capable to block KRAS oncogene signaling pathway is perspective direction in modern oncopharmacology. The aim of current study was to investigate effects of the combined treatment with rapamycin (RAP) and paclitaxel (PAC) in transgenic zebrafish (Danio rerio) with constant expression of mutant KRASV12 oncogene conjugated to green fluorescent protein (GFP) in epidermal cells. This strain has a modified phenotype due to epidermal hyperplasia and expression of GFP reporter at skin of embryos and adult fish.Materials and methods.Fish embryos 6 hpf were exposed to 0.1 % DMSO solution (control) and various doses of the drugs or combinations thereof. GFP expression in epidermal cells was morphometrically measured at 72 hpf.Results.Dose-related decrease in phenotypic changes up to complete epidermal normalization under RAP 50–400 nM treatment was observed. Treatment with nontoxic for embryos doses of PAC 50–250 nM increased fluorescence level in a dose-dependent manner, indicating an activation of KRAS signaling. Using of lower doses of RAP (10 and 25 nM) or PAC (10 nM) had no statistically significant effect on expression of transformed phenotype. Whereas combined treatment (RAP 10–25 nM and PAC 10–50 nM) dramatically decreased level of epidermal fluorescence and completely normalized phenotype of transgenic fish.Conclusions.Thus, mutual potentiating effect of RAP and PAC in low doses which leads to selective inhibition of the KRAS signaling pathway was revealed, indicating the prospect of further studies of these drugs combination for targeted cancer therapy.


2021 ◽  
Author(s):  
Yosuke Tanaka ◽  
Yasushi Kubota ◽  
Ivo Lieberam ◽  
Jillian L. Barlow ◽  
Josh W. Bramley ◽  
...  

AbstractNumerous strategies exist to isolate hematopoietic stem cells (HSCs) using complex combinations of markers and flow cytometry. However, robust identification of HSCs using imaging techniques is substantially more challenging which has prompted the recent development of HSC reporter mice. To date, none of the molecules used in these reporters have been useful for human HSC identification. Here we report that PLXDC2 is a useful marker for both mouse and human HSCs. Using a green fluorescent protein (GFP) knock-in at the Plxdc2 locus in mice (hereafter denoted as Plxdc2-GFP), we showed that Plxdc2-GFP is highly expressed in HSCs with 1 in 2.8 Plxdc2-GFP+CD150+ cells giving long-term multi-lineage reconstitution in transplantation. Moreover, we developed a novel human PLXDC2 antibody and showed that human PLXDC2+ HSCs have stronger long-term multilineage reconstitution ability compared with PLXDC2- HSCs in a xenograft model. Thus, our study identifies PLXDC2 as a highly relevant molecule in HSC identification, potentially allowing greater purity and live in vivo tracking of these cells.SummaryTo date, few molecules are available for isolation of HSCs across species. The present study shows that PLXDC2 is a highly useful molecule for isolation of HSCs, which works across mouse and human.


Sign in / Sign up

Export Citation Format

Share Document