scholarly journals Effect of Lipopolysaccharides on Liver Tumor Metastasis of twist1a/krasV12 Double Transgenic Zebrafish

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 95
Author(s):  
Jeng-Wei Lu ◽  
Liang-In Lin ◽  
Yuxi Sun ◽  
Dong Liu ◽  
Zhiyuan Gong

The poor prognosis of patients diagnosed with hepatocellular carcinoma (HCC) is directly associated with the multi-step process of tumor metastasis. TWIST1, a basic helix-loop-helix (bHLH) transcription factor, is the most important epithelial-mesenchymal transition (EMT) gene involved in embryonic development, tumor progression, and metastasis. However, the role that TWIST1 gene plays in the process of liver tumor metastasis in vivo is still not well understood. Zebrafish can serve as a powerful model for cancer research. Thus, in this study, we crossed twist1a+ and kras+ transgenic zebrafish, which, respectively, express hepatocyte-specific mCherry and enhanced green fluorescent protein (EGFP); they also drive overexpression of their respective transcription factors. This was found to exacerbate the development of metastatic HCC. Fluorescence of mCherry and EGFP-labeled hepatocytes revealed that approximately 37.5% to 45.5% of the twist1a+/kras+ double transgenic zebrafish exhibited spontaneous tumor metastasis from the liver to the abdomen and tail areas, respectively. We also investigated the inflammatory effects of lipopolysaccharides (LPS) on the hepatocyte-specific co-expression of twist1a+ and kras+ in double transgenic zebrafish. Following LPS exposure, co-expression of twist1a+ and kras+ was found to increase tumor metastasis by 57.8%, likely due to crosstalk with the EMT pathway. Our results confirm that twist1a and kras are important mediators in the development of metastatic HCC. Taken together, our in-vivo model demonstrated that co-expression of twist1a+/kras+ in conjunction with exposure to LPS enhanced metastatic HCC offers a useful platform for the study of tumor initiation and metastasis in liver cancer.

2021 ◽  
Vol 14 (9) ◽  
pp. 867
Author(s):  
Jeng-Wei Lu ◽  
Yuxi Sun ◽  
Liang-In Lin ◽  
Dong Liu ◽  
Zhiyuan Gong

The poor prognosis for patients with hepatocellular carcinoma (HCC) is related directly to metastasis. The Twist1 gene encodes for a transcription factor essential to embryogenesis. It has also been shown to promote epithelial-to-mesenchymal transition (EMT), invasion, and metastasis; however, there is currently no in vivo evidence that Twist1 plays a role in the metastasis of liver tumors. Zebrafish are increasingly being used as an alternative cancer model. In the current study, an adult-stage zebrafish HCC model was used to examine the synergistic effects of twist1a and xmrk, a well characterized oncogene, during HCC metastasis. We also examined the effects of two inflammatory agents, lipopolysaccharides (LPS) and dextran sulfate sodium (DSS), on the hepatocyte-specific expression of transgenic twist1a and xmrk. The conditional overexpression of twist1a and xmrk was shown to promote liver tumor metastasis in zebrafish, resulting in increased apoptosis and cell proliferation as well as tumor maintenance and propagation independent of the inherent EMT-inducing activity of xmrk. Exposing twist1a+/xmrk+ transgenic zebrafish to LPS or DSS was shown to promote metastasis, indicating that the overexpression of twist1a and xmrk led to crosstalk between the signaling pathways involved in EMT. This study provides important evidence pertaining to the largely overlooked effects of signaling crosstalk between twist1a and xmrk in regulating HCC metastasis. Our results also suggest that the co-expression of twist1a/xmrk in conjunction with exposure to LPS or DSS enhances HCC metastasis, and provides a valuable in vivo platform by which to investigate tumor initiation and metastasis in the study of liver cancer.


2010 ◽  
Vol 21 (2) ◽  
pp. 244-253 ◽  
Author(s):  
Matthew Reid MacPherson ◽  
Patricia Molina ◽  
Serhiy Souchelnytskyi ◽  
Christer Wernstedt ◽  
Jorge Martin-Pérez ◽  
...  

Snail1 is a major factor for epithelial-mesenchymal transition (EMT), an important event in tumor metastasis and in other pathologies. Snail1 is tightly regulated at transcriptional and posttranscriptional levels. Control of Snail1 protein stability and nuclear export by GSK3β phosphorylation is important for Snail1 functionality. Stabilization mechanisms independent of GSK3β have also been reported, including interaction with LOXL2 or regulation of the COP9 signalosome by inflammatory signals. To get further insights into the role of Snail1 phosphorylation, we have performed an in-depth analysis of in vivo human Snail1 phosphorylation combined with mutational studies. We identify new phosphorylation sites at serines 11, 82, and 92 and confirmed previously suggested phosphorylations at serine 104 and 107. Serines 11 and 92 participate in the control of Snail1 stability and positively regulate Snail1 repressive function and its interaction with mSin3A corepressor. Furthermore, serines 11 and 92 are required for Snail1-mediated EMT and cell viability, respectively. PKA and CK2 have been characterized as the main kinases responsible for in vitro Snail1 phosphorylation at serine 11 and 92, respectively. These results highlight serines 11 and 92 as new players in Snail1 regulation and suggest the participation of CK2 and PKA in the modulation of Snail1 functionality.


Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Enid Yi Ni Lam ◽  
Christopher J. Hall ◽  
Philip S. Crosier ◽  
Kathryn E. Crosier ◽  
Maria Vega Flores

Abstract Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1953-1960 ◽  
Author(s):  
M.C. Halloran ◽  
M. Sato-Maeda ◽  
J.T. Warren ◽  
F. Su ◽  
Z. Lele ◽  
...  

Over the past few years, a number of studies have described the generation of transgenic lines of zebrafish in which expression of reporters was driven by a variety of promoters. These lines opened up the real possibility that transgenics could be used to complement the genetic analysis of zebrafish development. Transgenic lines in which the expression of genes can be regulated both in space and time would be especially useful. Therefore, we have cloned the zebrafish promoter for the inducible hsp70 gene and made stable transgenic lines of zebrafish that express the reporter green fluorescent protein gene under the control of a hsp70 promoter. At normal temperatures, green fluorescent protein is not detectable in transgenic embryos with the exception of the lens, but is robustly expressed throughout the embryo following an increase in ambient temperature. Furthermore, we have taken advantage of the accessibility and optical clarity of the embryos to express green fluorescent protein in individual cells by focussing a sublethal laser microbeam onto them. The targeted cells appear to develop normally: cells migrate normally, neurons project axons that follow normal pathways, and progenitor cells divide and give rise to normal progeny cells. By generating other transgenic lines in which the hsp70 promoter regulates genes of interest, it should be possible to examine the in vivo activity of the gene products by laser-inducing specific cells to express them in zebrafish embryos. As a first test, we laser-induced single muscle cells to make zebrafish Sema3A1, a semaphorin that is repulsive for specific growth cones, in a hsp70-sema3A1 transgenic line of zebrafish and found that extension by the motor axons was retarded by the induced muscle.


2003 ◽  
Vol 17 (5) ◽  
pp. 959-966 ◽  
Author(s):  
Ning-Ai Liu ◽  
Haigen Huang ◽  
Zhongan Yang ◽  
Wiebke Herzog ◽  
Matthias Hammerschmidt ◽  
...  

Abstract We characterized zebrafish proopiomelanocortin (POMC) gene promoter, and sequence analysis revealed that the promoter contains regulatory elements conserved among vertebrate species. To monitor the ontogeny of the pituitary POMC lineage in living vertebrates, we generated transgenic zebrafish expressing green fluorescent protein (GFP) driven by the POMC promoter. Zebrafish POMC-GFP is first expressed asymmetrically as two bilateral groups of cells most anterior to the neural ridge midline at 18–20 h post fertilization (hpf). POMC-GFP-positive cells then fuse into a single-cell mass within the pituitary anlage after 24 hpf and subsequently organize as distinct anterior and posterior domains between 48 and 64 hpf. Immunohistochemical studies with ACTH and αMSH antisera showed that POMC-GFP was mainly targeted to both anterior and posterior pituitary corticotrophs, whereas posterior pituitary region melanotrophs did not express GFP. To determine in vivo zebrafish corticotroph responses, dexamethasone (10−5m) was added to live embryos, which selectively suppressed POMC-GFP expression in the anterior group of corticotrophs, suggesting a distinct domain that is responsive to glucocorticoid feedback. Transgenic zebrafish with specific POMC-GFP expression in pituitary corticotrophs offers a powerful genetic system for in vivo study of vertebrate corticotroph lineage development.


2021 ◽  
Vol 22 (8) ◽  
pp. 3994
Author(s):  
Yousheng Mao ◽  
Kwang-Heum Hong ◽  
Weifang Liao ◽  
Li Li ◽  
Seong-Jin Kim ◽  
...  

Zebrafish have become a popular animal model for studying various biological processes and human diseases. The metabolic pathways and players conserved among zebrafish and mammals facilitate the use of zebrafish to understand the pathological mechanisms underlying various metabolic disorders in humans. Adipocytes play an important role in metabolic homeostasis, and zebrafish adipocytes have been characterized. However, a versatile and reliable zebrafish model for long-term monitoring of adipose tissues has not been reported. In this study, we generated stable transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) in adipocytes. The transgenic zebrafish harbored adipose tissues that could be detected using GFP fluorescence and the morphology of single adipocyte could be investigated in vivo. In addition, we demonstrated the applicability of this model to the long-term in vivo imaging of adipose tissue development and regulation based on nutrition. The transgenic zebrafish established in this study may serve as an excellent tool to advance the characterization of white adipose tissue in zebrafish, thereby aiding the development of therapeutic interventions to treat metabolic diseases in humans.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1403
Author(s):  
Xiaosu Chen ◽  
Yajing Lv ◽  
Kejia Xu ◽  
Xiaoshuang Wang ◽  
Yujia Zhao ◽  
...  

Growing evidence suggests that cisplatin and other chemotherapeutic agents promote tumor metastasis while inhibiting tumor growth, which is a critical issue for certain patients in clinical practices. However, the role of chemotherapeutics in promoting tumor metastasis and the molecular mechanism involved are unclear. Here, we investigated the roles of cisplatin in promoting tumor metastasis in lung adenocarcinoma (LUAD). We demonstrated that cisplatin promoted epithelial-mesenchymal transition (EMT), cell motility, and metastasis in vitro and in vivo. The bioinformatic analysis and molecular biology approaches also indicated that DCBLD2 (Discoidin, CUB and LCCL domain containing 2) is a key gene that mediates cisplatin-induced metastasis. DCBLD2 stabilizes β-catenin by phosphorylating GSK3β and transporting accumulated β-catenin to the nucleus to promote the expression of EMT-related transcriptional factors (TFs), ultimately resulting in tumor metastasis. We also identified that cisplatin enhanced DCBLD2 expression by phosphorylating ERK and hence the AP-1-driven transcription of DCBLD2. Furthermore, DCBLD2-specific siRNAs encapsulated by nanocarriers prominently inhibit cisplatin-induced metastasis in vivo. Therefore, DCBLD2 plays a key role in cisplatin-induced metastasis in LUAD and is a potential target for preventing chemotherapy-induced metastasis in vivo.


2018 ◽  
Vol 5 (2) ◽  
pp. 42-49
Author(s):  
M. N. Yurova ◽  
D. R. Safina ◽  
I. V. Mizgirev

Background.Therapy with compounds potentially capable to block KRAS oncogene signaling pathway is perspective direction in modern oncopharmacology. The aim of current study was to investigate effects of the combined treatment with rapamycin (RAP) and paclitaxel (PAC) in transgenic zebrafish (Danio rerio) with constant expression of mutant KRASV12 oncogene conjugated to green fluorescent protein (GFP) in epidermal cells. This strain has a modified phenotype due to epidermal hyperplasia and expression of GFP reporter at skin of embryos and adult fish.Materials and methods.Fish embryos 6 hpf were exposed to 0.1 % DMSO solution (control) and various doses of the drugs or combinations thereof. GFP expression in epidermal cells was morphometrically measured at 72 hpf.Results.Dose-related decrease in phenotypic changes up to complete epidermal normalization under RAP 50–400 nM treatment was observed. Treatment with nontoxic for embryos doses of PAC 50–250 nM increased fluorescence level in a dose-dependent manner, indicating an activation of KRAS signaling. Using of lower doses of RAP (10 and 25 nM) or PAC (10 nM) had no statistically significant effect on expression of transformed phenotype. Whereas combined treatment (RAP 10–25 nM and PAC 10–50 nM) dramatically decreased level of epidermal fluorescence and completely normalized phenotype of transgenic fish.Conclusions.Thus, mutual potentiating effect of RAP and PAC in low doses which leads to selective inhibition of the KRAS signaling pathway was revealed, indicating the prospect of further studies of these drugs combination for targeted cancer therapy.


2017 ◽  
Vol 59 (3) ◽  
pp. 141-151 ◽  
Author(s):  
Daniele P. Romancino ◽  
Letizia Anello ◽  
Antonella Lavanco ◽  
Valentina Buffa ◽  
Maria Di Bernardo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document