scholarly journals Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models

2021 ◽  
Vol 22 (9) ◽  
pp. 4778
Author(s):  
Mark Joseph Maranan Desamero ◽  
Soo-Hyun Chung ◽  
Shigeru Kakuta

Understanding the host anti-fungal immunity induced by beta-glucan has been one of the most challenging conundrums in the field of biomedical research. During the last couple of decades, insights on the role of beta-glucan in fungal disease progression, susceptibility, and resistance have been greatly augmented through the utility of various beta-glucan cognate receptor-deficient mouse models. Analysis of dectin-1 knockout mice has clarified the downstream signaling pathways and adaptive effector responses triggered by beta-glucan in anti-fungal immunity. On the other hand, assessment of CR3-deficient mice has elucidated the compelling action of beta-glucans in neutrophil-mediated fungal clearance, and the investigation of EphA2-deficient mice has highlighted its novel involvement in host sensing and defense to oral mucosal fungal infection. Based on these accounts, this review focuses on the recent discoveries made by these gene-targeted mice in beta-glucan research with particular emphasis on the multifaceted aspects of fungal immunity.

2011 ◽  
Vol 60 (4) ◽  
pp. 329-345 ◽  
Author(s):  
Yoshinobu ICHIMURA ◽  
Masaaki KOMATSU

2011 ◽  
Vol 80 (1) ◽  
pp. 410-417 ◽  
Author(s):  
Melissa A. Gessner ◽  
Jessica L. Werner ◽  
Lauren M. Lilly ◽  
Michael P. Nelson ◽  
Allison E. Metz ◽  
...  

ABSTRACTWe have previously reported that mice deficient in the beta-glucan receptor Dectin-1 displayed increased susceptibility toAspergillus fumigatuslung infection in the presence of lower interleukin 23 (IL-23) and IL-17A production in the lungs and have reported a role for IL-17A in lung defense. As IL-23 is also thought to control the production of IL-22, we examined the role of Dectin-1 in IL-22 production, as well as the role of IL-22 in innate host defense againstA. fumigatus. Here, we show that Dectin-1-deficient mice demonstrated significantly reduced levels of IL-22 in the lungs early afterA. fumigatuschallenge. Culturing cells from enzymatic lung digestsex vivofurther demonstrated Dectin-1-dependent IL-22 production. IL-22 production was additionally found to be independent of IL-1β, IL-6, or IL-18 but required IL-23. The addition of recombinant IL-23 augmented IL-22 production in wild-type (WT) lung cells and rescued IL-22 production by lung cells from Dectin-1-deficient mice.In vivoneutralization of IL-22 in the lungs of WT mice resulted in impairedA. fumigatuslung clearance. Moreover, mice deficient in IL-22 also demonstrated a higher lung fungal burden afterA. fumigatuschallenge in the presence of impaired IL-1α, tumor necrosis factor alpha (TNF-α), CCL3/MIP-1α, and CCL4/MIP-1β production and lower neutrophil recruitment, yet intact IL-17A production. We further show that lung lavage fluid collected from bothA. fumigatus-challenged Dectin-1-deficient and IL-22-deficient mice had compromised anti-fungal activity againstA. fumigatus in vitro. Although lipocalin 2 production was observed to be Dectin-1 and IL-22 dependent, lipocalin 2-deficient mice did not demonstrate impairedA. fumigatusclearance. Moreover, lungS100a8,S100a9, andReg3gmRNA expression was not lower in either Dectin-1-deficient or IL-22-deficient mice. Collectively, our results indicate that early innate lung defense againstA. fumigatusis mediated by Dectin-1-dependent IL-22 production.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 529-529
Author(s):  
Sara Calzavarini ◽  
François Saller ◽  
Jose A. Fernandez ◽  
Linda Kadi ◽  
Anne C. Brisset ◽  
...  

Abstract Abstract 529 Protein S (ProS) is an important negative regulator of blood coagulation. Its physiological importance is evident in purpura fulminans and other life-threatening thrombotic disorders typical of ProS deficient patients. Our previous characterization of ProS deficiency in mouse models has shown similarities with the human phenotypes: heterozygous ProS-deficient mice (Pros+/−) had increased thrombotic risk whereas homozygous deficiency in ProS (Pros−/−) was incompatible with life (Blood 2009; 114:2307-2314). In tissues, ProS exerts cellular functions by binding to and activating tyrosine kinase receptors of the Tyro3 family (TAM) on the cell surface. To extend the analysis of coagulation defects beyond the Pros−/− phenotype and add new insights into the sites of synthesis ProS and its action, we generated mice with inactivated ProS in hepatocytes (Proslox/loxAlbCre+) as well as in endothelial and hematopoietic cells (Proslox/loxTie2Cre+). Both models resulted in significant reduction of circulating ProS levels and in a remarkable increased thrombotic risk in vivo. In a model of tissue factor (TF)-induced venous thromboembolism (VTE), only 17% of Proslox/loxAlbCre+ mice (n=12) and only 13% of Proslox/loxTie2Cre+ mice (n=14) survived, compared with 86% of Proslox/lox mice (n=14; P<0.001). To mimic a severe acquired ProS deficiency, ProS gene was inactivated at the adult stage using the polyI:C-inducible Mx1-Cre system (Proslox/loxMx1Cre+). Ten days after polyI:C treatment, Proslox/loxMx1Cre+ mice developed disseminated intravascular coagulation with extensive lung and liver thrombosis. It is worth noting that no skin lesions compatible with purpura fulminans were observed in any of the above-described models of partial ProS deficiency. In order to shed light on the pathogenesis of purpura fulminans, we exposed the different ProS-deficient mice to warfarin (0.2 mg/day). We observed that Pros+/−, Proslox/loxAlbCre+ and Proslox/loxTie2Cre+ mice developed retiform purpura (characterized by erythematous and necrotic lesions of the genital region and extremities) and died after 3 to 5 days after the first warfarin administration. In human, ProS is also synthesized by megakaryocytes and hence stored at high concentrations in circulating platelets (pProS). The role of pProS has been investigated by generating megakaryocyte ProS-deficient model using the PF4 promoter as Cre driver (Proslox/loxPf4Cre+). In the TF-induced VTE model, Proslox/loxPf4Cre+ (n=15) mice showed a significant increased risk of thrombosis compared to Proslox/lox controls (n=14; survival rate 47% and 86%, respectively; P<0.05). Furthermore, preliminary results suggest survival to be associated with higher circulating ProS levels. In order to evaluate the potential role of pProS in thrombus formation, we investigated the thrombotic response to intravenous injection of collagen-epinephrine in vivo and platelet function in vitro. Both in vivo and in vitro experiments showed similar results between Proslox/loxPf4Cre+ and Proslox/lox, indicating that platelet reactivity was not influenced by the absence of pProS. These data suggest that pProS is delivered at the site of thrombosis to inhibit thrombin generation. We further investigated the ability of ProS to function as a ligand of TAM receptors, by using homozygous and heterozygous deficient mice for both the TAM ligands ProS and Gas6. Gas6−/−Pros−/− mice died in utero and showed comparable dramatic bleeding and thrombotic phenotype as described for Pros−/− embryos. In conclusion, like complete ProS deficiency, double deficiency in ProS and Gas6 was lethal, whereas partial ProS deficiency was not. Mice partially deficient in ProS displayed a prothrombotic phenotype, including those with only deficiency in pProS. Purpura fulminans did not occur spontaneously in mice with partial Pros deficiency but developed upon warfarin administration. Thus, the use of different mice models of ProS deficiency can be instrumental in the study of its highly variable thrombotic phenotype and in the investigation of additional roles of ProS in inflammation and autoimmunity through TAM signaling. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 322 (4) ◽  
pp. 1352-1358 ◽  
Author(s):  
M. Freichel ◽  
R. Vennekens ◽  
J. Olausson ◽  
M. Hoffmann ◽  
C. Müller ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Nicholas A. Schmitz ◽  
Ritesh P. Thakare ◽  
Chun-Shiang Chung ◽  
Chang-Min Lee ◽  
Jack A. Elias ◽  
...  

Mammalian cells do not produce chitin, an insoluble polymer of N-acetyl-D-glucosamine (GlcNAc), although chitin is a structural component of the cell wall of pathogenic microorganisms such as Candida albicans. Mammalian cells, including cells of the innate immune system elaborate chitinases, including chitotriosidase (Chit1), which may play a role in the anti-fungal immune response. In the current study, using knockout mice, we determined the role of Chit1 against systemic candidiasis. Chit1-deficient mice showed significant decrease in kidney fungal burden compared to mice expressing the functional enzyme. Using in vitro anti-candidal neutrophil functional assays, the introduction of the Chit1:chitin digestion end-product, chitobiose (N-acetyl-D-glucosamine dimer, GlcNAc2), decreased fungal-induced neutrophil swarming and Candida killing in vitro. Also, a role for the lectin-like binding site on the neutrophil integrin CR3 (Mac-1, CD11b/CD18) was found through physiological competitive interference by chitobiose. Furthermore, chitobiose treatment of wild type mice during systemic candidiasis resulted in the significant increase in fungal burden in the kidney. These data suggest a counterproductive role of Chit1 in mounting an efficient anti-fungal defense against systemic candidiasis.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Marieke Goedhart ◽  
Edith Slot ◽  
Maria F. Pascutti ◽  
Sulima Geerman ◽  
Timo Rademakers ◽  
...  

Apart from controlling hematopoiesis, the bone marrow (BM) also serves as a secondary lymphoid organ, as it can induce naïve T cell priming by resident dendritic cells (DC). When analyzing DCs in murine BM, we uncovered that they are localized around sinusoids, can (cross)-present antigens, become activated upon intravenous LPS-injection, and for the most part belong to the cDC2 subtype which is associated with Th2/Th17 immunity. Gene-expression profiling revealed that BM-resident DCs are enriched for several c-type lectins, including Dectin-1, which can bind beta-glucans expressed on fungi and yeast. Indeed, DCs in BM were much more efficient in phagocytosis of both yeast-derived zymosan-particles and Aspergillus conidiae than their splenic counterparts, which was highly dependent on Dectin-1. DCs in human BM could also phagocytose zymosan, which was dependent on β1-integrins. Moreover, zymosan-stimulated BM-resident DCs enhanced the differentiation of hematopoietic stem and progenitor cells towards neutrophils, while also boosting the maintenance of these progenitors. Our findings signify an important role for BM DCs as translators between infection and hematopoiesis, particularly in anti-fungal immunity. The ability of BM-resident DCs to boost neutrophil formation is relevant from a clinical perspective and contributes to our understanding of the increased susceptibility for fungal infections following BM damage.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2045-2045
Author(s):  
Miro Koulnis ◽  
Ying Liu ◽  
Merav Socolovsky

Abstract Abstract 2045 Signaling and transcriptional networks frequently contain negative autoregulatory feedback loops, where gene products negatively regulate their own induction or activation. These negative autoregulatory motifs are predicted to exert dual functions, accelerating gene induction, and providing stable gene expression levels in the face of the random perturbations inherent to biological systems. These predictions were confirmed experimentally in synthetic transcriptional circuits [1,2], but it is unknown whether they also hold in naturally occurring higher level biological networks. Here we studied the role of negative autoregulation by erythroid progenitors in the control of erythropoiesis. Erythropoietic rate, which may increase ten fold its basal rate during hypoxic stress, is dependent on the size of the erythroid progenitor pool, in turn regulated by the hormone erythropoietin (Epo). We recently found that, in addition, early erythroblasts negatively regulate their own numbers, through their co-expression of the death receptor Fas and its ligand FasL. Here we investigated the role of this negative autoregulation using Fas or FasL-deficient mice. We used the naturally-occuring mutant mouse strains, lpr and gld, deficient in Fas and FasL, respectively, back crossed onto the Rag1-/- mutant background, in order to avoid the autoimmune syndrome associated with Fas mutation. We proceeded to examine basal and stress erythropoiesis in the gld-Rag1-/- and lpr-Rag1-/- mice, and in matched Rag1-/- controls. We found that, in the basal steady state, the average size of the spleen early erythroid progenitor pool in gld-Rag1-/- and lpr-Rag1-/- mice increased 1.5 to 2 fold, consistent with loss of a negative regulator. Further, gld-Rag1-/- mice had a significantly elevated hematocrit in spite of normal Epo blood levels. The hematocrit was normal in the lpr-Rag1-/- mice, but Epo levels in this strain were significantly lower than normal. Taken together, these genetic mouse models show that Fas-mediated apoptosis of early erythroblasts in spleen negatively regulates erythropoietic rate in the basal state. We also found that the size of the progenitor pool was highly variable between individual Fas-deficient mice, suggesting reduced ability to maintain a stable steady-state erythorpoietic rate. In addition, gld-Rag1-/- and lpr-Rag1-/- mice had a significantly delayed erythropoietic stress response. Following an injection of a single dose of Epo (300 U/25 g), the early erythroblast population in spleen, ‘EryA’ (Ter119highCD71highFSChigh, [3]) expanded 30 to 60 fold its basal size. However, this expansion was significantly delayed in gld-Rag1-/- and lpr-Rag1-/- mice. Specifically, on day 2 of the stress response, control Rag1-/- mice had a 30% larger EryA progenitor pool compared with lpr-Rag1-/- mice, a difference equivalent to 10 fold the size of the basal EryA pool. Consequently, control mice achieved a higher hematocrit 24 hours earlier than mutant gld-Rag1-/- and lpr-Rag1-/- mice. We propose that the larger expansion of EryA cells during the stress response in control mice is due to the recruitment of a reserve population of Fas-positive EryA. This reserve population, absent in mice deficient in the Fas pathway, undergoes Fas-mediated apoptosis in the basal steady state. However, high Epo levels during the stress response suppress Fas expression [3], rescuing these cells from apoptosis and accelerating the stress response. These findings show, using genetic mouse models, that the stability of stead-state erythropoietic rate and its rapid stress response are key outcomes of negative autoregulation within the erythroid progenitor pool. Furthermore, they show experimentally that dynamic properties of negative autoregulatory loops in simple low-level networks are also exerted in the context of complex inter-cellular, tissue level networks such as those that regulate erythroipoietic rate. References: 1. Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405: 590–593. 2. Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323: 785–793. 3. Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, et al. (2006) Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 108: 123–133. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Kristiaan Wouters ◽  
Ronit Shiri-Sverdlov ◽  
Patrick J. van Gorp ◽  
Marc van Bilsen ◽  
Marten H. Hofker

AbstractHyperlipidemia is the most important risk factor for atherosclerosis, which is the major cause of cardiovascular disease. The etiology of hyperlipidemia and atherosclerosis is complex and governed by multiple interacting genes. However, mutations in two genes have been shown to be directly involved, i.e., the low-density lipoprotein receptor (LDLR) and apolipoprotein E (ApoE). Genetically modified mouse models have been instrumental in elucidating the underlying molecular mechanisms in lipid metabolism. In this review, we focus on the use of two of the most widely used mouse models, ApoE- and LDLR-deficient mice. After almost a decade of applications, it is clear that each model has unique strengths and drawbacks when carrying out studies of the role of additional genes and environmental factors such as nutrition and lipid-lowering drugs. Importantly, we elaborate on mice expressing mutant forms of APOE, including the


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xue Jiang ◽  
Xiaoli Zhu ◽  
Yu Cheng ◽  
Muhammad Azhar ◽  
Xuemei Xing ◽  
...  

AbstractIn mammals, germline development undergoes dramatic morphological and molecular changes and is epigenetically subject to intricate yet exquisite regulation. Which epigenetic players and how they participate in the germline developmental process are not fully characterized. Spin1 is a multifunctional epigenetic protein reader that has been shown to recognize H3 “K4me3-R8me2a” histone marks, and more recently the non-canonical bivalent H3 “K4me3-K9me3/2” marks as well. As a robust Spin1-interacting cofactor, Spindoc has been identified to enhance the binding of Spin1 to its substrate histone marks, thereby modulating the downstream signaling; However, the physiological role of Spindoc in germline development is unknown. We generated two Spindoc knockout mouse models through CRISPR/Cas9 strategy, which revealed that Spindoc is specifically required for haploid spermatid development, but not essential for meiotic divisions in spermatocytes. This study unveiled a new epigenetic player that participates in haploid germline development.


Sign in / Sign up

Export Citation Format

Share Document