scholarly journals Synthesis and Evaluation of AlgNa-g-poly(QCL-co-HEMA) Hydrogels as Platform for Chondrocyte Proliferation and Controlled Release of Betamethasone

2021 ◽  
Vol 22 (11) ◽  
pp. 5730
Author(s):  
Jomarien García-Couce ◽  
Marioly Vernhes ◽  
Nancy Bada ◽  
Lissette Agüero ◽  
Oscar Valdés ◽  
...  

Hydrogels obtained from combining different polymers are an interesting strategy for developing controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using a different concentration of the components. The hydrogels were characterized by Fourier transform-infrared spectroscopy, scanning electron microscopy, and a swelling degree. Betamethasone release as well as the in vitro cytocompatibility with chondrocytes and fibroblast cells were also evaluated. Scanning electron microscopy confirmed the porous surface morphology of the hydrogels in all cases. The swelling percent was determined at a different pH and was observed to be pH-sensitive. The controlled release behavior of betamethasone from the matrices was investigated in PBS media (pH = 7.4) and the drug was released in a controlled manner for up to 8 h. Human chondrocytes and fibroblasts were cultured on the hydrogels. The MTS assay showed that almost all hydrogels are cytocompatibles and an increase of proliferation in both cell types after one week of incubation was observed by the Live/Dead® assay. These results demonstrate that these hydrogels are attractive materials for pharmaceutical and biomedical applications due to their characteristics, their release kinetics, and biocompatibility.

Author(s):  
Jomarien García-Couce ◽  
Marioly Vernhes ◽  
Nancy Bada ◽  
Lissette Agüero ◽  
Oscar Valdés ◽  
...  

Hydrogels obtained from the combination of different polymers are an interesting strategy for the development of controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using different concentration of the components. The hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and swelling degree; betamethasone release as well as the in vitro cytocompatibility with chondrocytes and fibroblast cells were also evaluated. Scanning electron microscopy confirmed the porous surface morphology of the hydrogels in all cases. The swelling percent was determined at different pH and was observed to be pH-sensitive. The controlled release behavior of betamethasone from the matrices was investigated in PBS media (pH = 7.4) and the drug was released in a controlled manner up to 8 h. Human chondrocytes and fibroblasts were cultured on the hydrogels. The MTS assay shown that almost all hydrogels are cytocompatibles and an increase the proliferation in both cell types after one week of incubation was observed by Live/Dead® assay. These results demonstrate that these hydrogels are attractive materials for pharmaceutical and biomedical applications due to their characteristics, their release kinetics and biocompatibility.


Author(s):  
Jomarien García-Couce ◽  
Marioly Vernhes ◽  
Nancy Bada ◽  
Lissette Agüero ◽  
Oscar Valdés ◽  
...  

Hydrogels obtained from the combination of different polymers are an interesting strategy for the development of controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using different concentration of the components. The hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and swelling degree; betamethasone release as well as the in vitro cytocompatibility with chondrocytes and fibroblast cells were also evaluated. Scanning electron microscopy confirmed the porous surface morphology of the hydrogels in all cases. The swelling percent was determined at different pH and was observed to be pH-sensitive. The controlled release behavior of betamethasone from the matrices was investigated in PBS media (pH = 7.4) and the drug was released in a controlled manner up to 8 h. Human chondrocytes and fibroblasts were cultured on the hydrogels. The MTS assay shown that almost all hydrogels are cytocompatibles and an increase the proliferation in both cell types after one week of incubation was observed by Live/Dead® assay. These results demonstrate that these hydrogels are attractive materials for pharmaceutical and biomedical applications due to their characteristics, their release kinetics and biocompatibility.


Author(s):  
O. SREEKANTH REDDY ◽  
M. C. S. SUBHA ◽  
T. JITHENDRA ◽  
C. MADHAVI ◽  
K. CHOWDOJI RAO ◽  
...  

Objective: The aim of the present study was to fabricate and evaluate the drug release studies using Sodium Alginate (SA) and Gelatin (GE) microbeads intercalated with Kaolin (KA) nanoclay for sustained release of D-Penicillamine (D-PA). Methods: Sodium alginate/gelatin/Kaolin blend microbeads were prepared by an extrusion method by using glutaraldehyde (GA) as a crosslinker. The obtained microbeads were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X–ray diffraction (XRD). Drug release kinetics of the microbeads was investigated in simulated intestinal fluid (pH 7.4) at 37 °C. Results: Microbeads formation was confirmed by FTIR spectroscopy. X-RD reveals that the KA should be intercalated with the drug and also it confirms the molecular level dispersion of D-Penicillamine into microbeads. Scanning Electron Microscopy (SEM) studies reveal that the beads were in spherical shape with some wrinkled depressions on the surface. The in vitro release study indicates the D-Penicillamine released in a controlled manner. The in vitro release kinetics was assessed by Korsmeyer-Peppas equation and the ‘n’ value lies in between 0.557-0.693 indicates Non-Fickian diffusion process. Conclusion: The results suggest that the developed KA intercalated microbeads are good potential drug carrier for the controlled release of D-PA.


Author(s):  
William J. Lamoreaux ◽  
David L. Smalley ◽  
Larry M. Baddour ◽  
Alfred P. Kraus

Infections associated with the use of intravascular devices have been documented and have been reported to be related to duration of catheter usage. Recently, Eaton et al. reported that Staphylococcus epidermidis may attach to silastic catheters used in continuous ambulatory peritoneal dialysis (CAPD) treatment. The following study presents findings using scanning electron microscopy (SEM) of S. epidermidis adherence to silastic catheters in an in vitro model. In addition, sections of polyvinyl chloride (PVC) dialysis bags were also evaluated by SEM.The S. epidermidis strain RP62A which had been obtained in a previous outbreak of coagulase-negative staphylococcal sepsis at local hospitals was used in these experiments. The strain produced surface slime on exposure to glucose, whereas a nonadherent variant RP62A-NA, which was also used in these studies, failed to produce slime. Strains were grown overnight on blood agar plates at 37°C, harvested from the surface and resuspended in sterile saline (0.85%), centrifuged (3,000 rpm for 10 minutes) and then washed twice in 0.1 M phosphate-buffered saline at pH 7.0. Organisms were resuspended at a concentration of ca. 106 CFU/ml in: a) sterile unused dianeal at 4.25% dextrose, b) sterile unused dianeal at 1.5% dextrose, c) sterile used dialysate previously containing 4.25% dextrose taken from a CAPD patient, and d) sterile used dialysate previously containing 1.5% dextrose taken from a CAPD patient.


1984 ◽  
Vol 52 (02) ◽  
pp. 102-104 ◽  
Author(s):  
L J Nicholson ◽  
J M F Clarke ◽  
R M Pittilo ◽  
S J Machin ◽  
N Woolf

SummaryA technique for harvesting mesothelial cells is described. This entails collagenase digestion of omentum after which the cells can be cultured. The technique has been developed using the rat, but has also been successfully applied to human tissue. Cultured rat mesothelial cells obtained in this way have been examined by scanning electron microscopy. Rat mesothelial cells grown on plastic film have been exposed to blood in an in vitro system using a Baumgartner chamber and have been demonstrated to support blood flow. No adhering platelets were observed on the mesothelial cell surface. Fibroblasts similarily exposed to blood as a control were washed off the plastic.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


1987 ◽  
Vol 16 (1) ◽  
pp. 48-52
Author(s):  
C. A. Chamorro ◽  
P. de Paz ◽  
J. G. Fernandez ◽  
M. Fernandez ◽  
J. M. Villar

Sign in / Sign up

Export Citation Format

Share Document