scholarly journals S-Palmitoylation of Synaptic Proteins as a Novel Mechanism Underlying Sex-Dependent Differences in Neuronal Plasticity

2021 ◽  
Vol 22 (12) ◽  
pp. 6253
Author(s):  
Monika Zaręba-Kozioł ◽  
Anna Bartkowiak-Kaczmarek ◽  
Matylda Roszkowska ◽  
Krystian Bijata ◽  
Izabela Figiel ◽  
...  

Although sex differences in the brain are prevalent, the knowledge about mechanisms underlying sex-related effects on normal and pathological brain functioning is rather poor. It is known that female and male brains differ in size and connectivity. Moreover, those differences are related to neuronal morphology, synaptic plasticity, and molecular signaling pathways. Among different processes assuring proper synapse functions are posttranslational modifications, and among them, S-palmitoylation (S-PALM) emerges as a crucial mechanism regulating synaptic integrity. Protein S-PALM is governed by a family of palmitoyl acyltransferases, also known as DHHC proteins. Here we focused on the sex-related functional importance of DHHC7 acyltransferase because of its S-PALM action over different synaptic proteins as well as sex steroid receptors. Using the mass spectrometry-based PANIMoni method, we identified sex-dependent differences in the S-PALM of synaptic proteins potentially involved in the regulation of membrane excitability and synaptic transmission as well as in the signaling of proteins involved in the structural plasticity of dendritic spines. To determine a mechanistic source for obtained sex-dependent changes in protein S-PALM, we analyzed synaptoneurosomes isolated from DHHC7-/- (DHHC7KO) female and male mice. Our data showed sex-dependent action of DHHC7 acyltransferase. Furthermore, we revealed that different S-PALM proteins control the same biological processes in male and female synapses.

2001 ◽  
Vol 15 (6) ◽  
pp. 960-971 ◽  
Author(s):  
Tomoharu Osada ◽  
Gen Watanabe ◽  
Shunzo Kondo ◽  
Masashi Toyoda ◽  
Yoshiyuki Sakaki ◽  
...  

Abstract Male reproductive performance is composed of two principal elements, copulation and spermatogenesis. A wealth of literature has described the intricate web of endocrine events underlying these biological processes. In the present study we show that puromycin-sensitive aminopeptidase (Psa)-deficient mice are infertile, lack copulatory behavior, and have impaired spermatogenesis. The reproductive deficits of the mutants are not restored by androgen administration, although no aberrant localization of the sex steroid receptors was detectable in their brains and testes. Considering the strong expression of the Psa gene in the brain and Sertoli cells and the degenerative morphology of Sertoli cells in Psa-deficient mice, Psa may participate in testosterone-mediated reproductive signal pathways in the brain and testis.


Neuron ◽  
2002 ◽  
Vol 34 (6) ◽  
pp. 961-972 ◽  
Author(s):  
Joannella Morales ◽  
P.Robin Hiesinger ◽  
Andrew J. Schroeder ◽  
Kazuhiko Kume ◽  
Patrik Verstreken ◽  
...  

Author(s):  
Tatjana Abaffy ◽  
Hiroaki Matsunami

Abstract Scientific evidence related to the aromatase reaction in various biological processes spanning from mid-1960 is abundant, however, as our analytical sensitivity increases, a new look at the old chemical reaction is necessary. Here, we review an irreversible aromatase reaction from the substrate androstenedione. It proceeds in 3 consecutive steps. In the first two steps, 19-hydroxy steroids are produced. They can dissociate from the enzyme complex and either accumulate in tissues or enter the blood.In this review, we want to highlight the potential importance of these 19-hydroxy steroids in various physiological and pathological conditions. We focus primarily on 19-hydroxy steroids, and in particular on the 19-hydroxyandrostenedione produced by the incomplete aromatase reaction. Using a PubMed database and search terms aromatase reaction,19-hydroxylation of androgens and steroid measurements, we detail the chemistry of the aromatase reaction and list previous and current methods used to measure 19-hydroxy steroids. We present the evidence of the existence of 19-hydroxy steroids in the brain tissue, ovaries, testes, adrenal glands, prostate cancer and also during pregnancy and parturition and in Cushing’s disease. Based on the available literature, a potential involvement of 19-hydroxy steroids in the brain differentiation process, sperm motility, ovarian function, and hypertension is suggested and warrant future research.We hope that with the advancement of highly specific and sensitive analytical methods, future research into 19-hydroxy steroids will be encouraged, as much remains to be learned and discovered.


Daedalus ◽  
2015 ◽  
Vol 144 (1) ◽  
pp. 67-82 ◽  
Author(s):  
Brendon O. Watson ◽  
György Buzsáki

Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called “sharp-wave ripple” seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep–REM and non-REM, the latter of which has an abundance of ripple electrical activity–might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.


Author(s):  
Markus Reuber ◽  
Gregg H. Rawlings ◽  
Steven C. Schachter

This chapter examines how, when treating individuals with Psychogenic Non-Epileptic Events (PNEE), a neuropsychologist operates from a viewpoint of PNEE as a “psycho-neurological” problem. The distinction between a “neurological” and “psychological” origin has important implications for the training necessary to perform the services offered by each specialist, but both specialties actually refer to the same origin of the PNEE. In both cases PNEE clearly arise from the brain. The neuropsychologist views these spheres not as separate and distinct, but rather as being on a continuous spectrum, with the major difference being the scale and scope at which the brain is considered. Neurological problems are typically viewed as large scale, concretely identifiable, and dealing with fundamental functioning and structural integrity. Psychological problems are viewed as small-scale neurological connection problems, too granular for the primary attention of neurologists. This is the clinical domain of psychiatrists, psychologists, and neuropsychologists. PNEE clearly have their origins in the brain, falling within the sphere of small-scale connection problems of brain functioning. Finally this chapter considers the lack of a clear explanation for why and how PNEE manifest in the brain because their true origin remains elusive.


Epigenomics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Andrew M Shafik ◽  
Emily G Allen ◽  
Peng Jin

N6-methyladenosine (m6A) is a dynamic RNA modification that regulates various aspects of RNA metabolism and has been implicated in many biological processes and transitions. m6A is highly abundant in the brain; however, only recently has the role of m6A in brain development been a focus. The machinery that controls m6A is critically important for proper neurodevelopment, and the precise mechanisms by which m6A regulates these processes are starting to emerge. However, the role of m6A in neurodegenerative and neuropsychiatric diseases still requires much elucidation. This review discusses and summarizes the current body of knowledge surrounding the function of the m6A modification in regulating normal brain development, neurodegenerative diseases and outlines possible future directions.


2019 ◽  
pp. 105971231987997 ◽  
Author(s):  
Atefeh Azarpaikan ◽  
HamidReza Taherii Torbati ◽  
Mehdi Sohrabi ◽  
Reza Boostani ◽  
Majid Ghoshuni

Transcranial direct current stimulation (tDCS) can shift neuronal membrane excitability by applying a weak slow electric current to the brain through the scalp. Attendant electroencephalography (EEG) can provide valuable information about the tDCS mechanisms. This study investigated the effects of anodal tDCS on parietal cortex and cerebellum activity to reveal possible modulation of spontaneous oscillatory brain activity. Timing of the tDCS priming protocol in relation to the intervention especially with respect to bimanual coordination task was also studied. EEG activity was measured in 120 healthy participants before and after sessions of anodal stimulation of the parietal cortex and cerebellum to detect the tDCS-induced alterations. Variations of the delta, theta, alpha, beta, and sensorimotor rhythm (SMR) power bands were analyzed using a MATLAB program. The results showed that anodal parietal and cerebellar tDCS cause changes in brain wave frequencies. They also showed an increase in alpha, beta, and SMR power bands during stimulation sessions for during stimulation parietal group ( p ≤ .01). Also, theta, alpha, beta, and SMR power bands were increased in during stimulation cerebellum group in stimulation sessions and 48 h later ( p ≤ .01). Moreover, the results revealed that the tDCS intervention led to a variety of activations in some areas of the brain. Altogether, the cerebellar tDCS during motor task had a significant improvement in off-line learning.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax1031 ◽  
Author(s):  
Lei Bai ◽  
Jiazhen Dong ◽  
Zhenqiu Liu ◽  
Youliang Rao ◽  
Pinghui Feng ◽  
...  

Helicases play pivotal roles in fundamental biological processes, and posttranslational modifications regulate the localization, function, and stability of helicases. Here, we report that methionine oxidation of representative helicases, including DNA and RNA helicases of viral (ORF44 of KSHV) and cellular (MCM7 and RIG-I) origin, promotes their expression and functions. Cellular viperin, a major antiviral interferon-stimulated gene whose functions beyond host defense remain largely unknown, catalyzes the methionine oxidation of these helicases. Moreover, biochemical studies entailing loss-of-function mutations of helicases and a pharmacological inhibitor interfering with lipid metabolism and, hence, decreasing viperin activity indicate that methionine oxidation potently increases the stability and enzyme activity of these helicases that are critical for DNA replication and immune activation. Our work uncovers a pivotal role of viperin in catalyzing the methionine oxidation of helicases that are implicated in diverse fundamental biological processes.


Sign in / Sign up

Export Citation Format

Share Document