scholarly journals The Transplantation Resistance of Type II Diabetes Mellitus Adipose-Derived Stem Cells Is Due to G6PC and IGF1 Genes Related to the FoxO Signaling Pathway

2021 ◽  
Vol 22 (12) ◽  
pp. 6595
Author(s):  
Michiko Horiguchi ◽  
Yuya Turudome ◽  
Kentaro Ushijima

In cases of patients with rapidly progressive diabetes mellitus (DM), autologous stem cell transplantation is considered as one of the regenerative treatments. However, whether the effects of autonomous stem cell transplantation on DM patients are equivalent to transplantation of stem cells derived from healthy persons is unclear. This study revealed that adipose-derived mesenchymal stem cells (ADSC) derived from type II DM patients had lower transplantation efficiency, proliferation potency, and stemness than those derived from healthy persons, leading to a tendency to induce apoptotic cell death. To address this issue, we conducted a cyclopedic mRNA analysis using a next-generation sequencer and identified G6PC3 and IGF1, genes related to the FoxO signaling pathway, as the genes responsible for lower performance. Moreover, it was demonstrated that the lower transplantation efficiency of ADSCs derived from type II DM patients might be improved by knocking down both G6PC3 and IGF1 genes. This study clarified the difference in transplantation efficiency between ADSCs derived from type II DM patients and those derived from healthy persons and the genes responsible for the lower performance of the former. These results can provide a new strategy for stabilizing the quality of stem cells and improving the therapeutic effects of regenerative treatments on autonomous stem cell transplantation in patients with DM.

2017 ◽  
Vol 4 (02) ◽  
pp. 1166
Author(s):  
Kumar Sushaniba

Stem cells can be differentiated into many types of mature cells. Among degenerative diseases, type 1 diabetes mellitus (T1DM) is considered to be a good target disease for stem cell therapeutic application. Indeed, several studies have suggested that stem cells can be differentiated, both in vitro and in vivo, into beta cells which regenerate the pancreas. However, recent studies have shown that stem cell therapy can also provide benefits for type 2 diabetes mellitus (T2DM), which is not related to beta cell degeneration in the pancreas. This commentary will discuss the opportunity to use mesenchymal stem cells (MSCs) to treat T2DM, citing various stem cell therapies from recent published studies. Indeed, a current report “Expanded autologous adipose derived stem cell transplantation for type 2 diabetes mellitus, Biomedical Research and Therapy, 3(12): 1034-1044” evaluated and confirmed the positive effects of stem cell transplantation for blood glucose regulation in T2DM.


2020 ◽  
Vol 20 (6) ◽  
pp. 903-916 ◽  
Author(s):  
Tamer Haydara ◽  
Mostafa Gabr ◽  
Mohamed Abofreikha ◽  
Abeer Bahnasy ◽  
Hosny Salama ◽  
...  

Background: It was observed that type II diabetes mellitus associated with chronic liver failure improved after stem cell transplantation. However, there were no adequate studies regarding this issue. The aim of this study was to evaluate the effect of stem cell transplantation on associated type II diabetes mellitus and on the liver function tests. Methods: This pilot study included 30 patients of post-hepatitis chronic liver failure who were classified into two groups: Group I included patients with chronic liver cell failure associated with type 2 diabetes. Group II included patients without type II diabetes. Autologous CD34+ and CD133+ stem cells were percutaneously infused into the portal vein. Responders (regarding the improvement of diabetes as well as improvement of liver condition) and non-responders were determined. Patients were followed up for one, three and six months after the intervention evaluating their three-hour glucose tolerance test, C- peptide (Fasting and postprandial), Child-Pugh score and performance score one month, three months, and six months after stem cell therapy. Results: Both synthetic and excretory functions of the liver were improved in 10 patients (66.66 %) of group I and in 12 patients (80 %) of group II. Significant improvement in the Oral Glucose Tolerance Test in the responders of both the groups was well defined from the 3rd month and this was comparable to changes in liver function tests and Child-Pugh score. Conclusions: Successful stem cell therapy in chronic liver cell failure patients can improve but not cure the associating type 2 diabetes by improving insulin resistance.


2020 ◽  
Vol 15 (4) ◽  
pp. 321-331 ◽  
Author(s):  
Zhe Gong ◽  
Kaishun Xia ◽  
Ankai Xu ◽  
Chao Yu ◽  
Chenggui Wang ◽  
...  

Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.


2021 ◽  
Vol 22 (9) ◽  
pp. 4357
Author(s):  
Sahng G. Kim

Despite the recent explosion of investigations on dental pulp regeneration using various tissue engineering strategies, the translation of the findings from such studies into therapeutic applications has not been properly achieved. The purpose of this scoping review was to systematically review the efficacy of mesenchymal stem cell transplantation for dental pulp regeneration. A literature search was conducted using five electronic databases from their inception to January 2021 and supplemented by hand searches. A total of 17 studies, including two clinical trials and 15 animal studies using orthotopic pulp regeneration models, were included for the review. The risk of bias for the individual studies was assessed. This scoping review demonstrated that the regeneration of vascularized pulp-like tissue was achieved using the stem cell transplantation strategy in animal models. Autologous cell transplantation in two clinical studies also successfully regenerated vascularized vital tissue. Dental pulp stem cell subpopulations, such as mobilized dental pulp stem cells, injectable scaffolds such as atelocollagen, and a granulocyte-colony forming factor, were the most commonly used for pulp regeneration. The overall risk of bias was unclear for animal studies and was moderate or judged to raise some concerns for clinical studies. More high-quality clinical studies are needed to further determine the safety and efficacy of the stem cell transplantation strategy for dental pulp regeneration.


Sign in / Sign up

Export Citation Format

Share Document