scholarly journals Antibacterial Poly(ε-CL)/Hydroxyapatite Electrospun Fibers Reinforced by Poly(ε-CL)-b-Poly(Ethylene Phosphoric Acid)

2021 ◽  
Vol 22 (14) ◽  
pp. 7690
Author(s):  
Ilya Nifant’ev ◽  
Dmitry Gavrilov ◽  
Alexander Tavtorkin ◽  
Maria Chinova ◽  
Victoria Besprozvannykh ◽  
...  

In bone surgery and orthopedics, bioresorbable materials can be helpful in bone repair and countering post-op infections. Explicit antibacterial activity, osteoinductive and osteoconductive effects are essential to achieving this objective. Nonwoven electrospun (ES) fibers are receiving the close attention of physicians as promising materials for wound dressing and tissue engineering; potentially, in high contrast with dense materials, ES mats hamper regeneration of the bone extracellular matrix to a lesser extent. The use of the compositions of inherently biodegradable polyesters (poly(ε-caprolactone) PCL, poly(lactoglycolide), etc.), calcium phosphates and antibiotics is highly prospective, but the task of forming ES fibers from such compositions is complicated by the incompatibility of the main organic and inorganic ingredients, polyesters and calcium phosphates. In the present research we report the synthesis of hydroxyapatite (HAp) nanoparticles with uniform morphology, and demonstrate high efficiency of the block copolymer of PCL and poly(ethylene phosphoric acid) (PEPA) as an efficient compatibilizer for PCL/HAp mixtures that are able to form ES fibers with improved mechanical characteristics. The materials obtained in the presence of vancomycin exhibited incremental drug release against Staphylococcus aureus (St. aureus).

2020 ◽  
Vol 22 (1) ◽  
pp. 340
Author(s):  
Ilya Nifant’ev ◽  
Andrei Siniavin ◽  
Eduard Karamov ◽  
Maxim Kosarev ◽  
Sergey Kovalchuk ◽  
...  

Despite the world’s combined efforts, human immunodeficiency virus (HIV), the causative agent of AIDS, remains one of the world’s most serious public health challenges. High genetic variability of HIV complicates the development of anti-HIV vaccine, and there is an actual clinical need for increasing the efficiency of anti-HIV drugs in terms of targeted delivery and controlled release. Tenofovir (TFV), a nucleotide-analog reverse transcriptase inhibitor, has gained wide acceptance as a drug for pre-exposure prophylaxis or treatment of HIV infection. In our study, we explored the potential of tenofovir disoproxil (TFD) adducts with block copolymers of poly(ethylene glycol) monomethyl ether and poly(ethylene phosphoric acid) (mPEG-b-PEPA) as candidates for developing a long-acting/controlled-release formulation of TFV. Two types of mPEG-b-PEPA with numbers of ethylene phosphoric acid (EPA) fragments of 13 and 49 were synthesized by catalytic ring-opening polymerization, and used for preparing four types of adducts with TFD. Antiviral activity of [mPEG-b-PEPA]TFD or tenofovir disoproxil fumarate (TDF) was evaluated using the model of experimental HIV infection in vitro (MT-4/HIV-1IIIB). Judging by the values of the selectivity index (SI), TFD exhibited an up to 14-fold higher anti-HIV activity in the form of mPEG-b-PEPA adducts, thus demonstrating significant promise for further development of long-acting/controlled-release injectable TFV formulations.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 791 ◽  
Author(s):  
Ming-Hsiang Chang ◽  
Yu-Ping Hsiao ◽  
Chia-Yen Hsu ◽  
Ping-Shan Lai

Wound infection extends the duration of wound healing and also causes systemic infections such as sepsis, and, in severe cases, may lead to death. Early prevention of wound infection and its appropriate treatment are important. A photoreactive modified gelatin (GE-BTHE) was synthesized by gelatin and a conjugate formed from the 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and the 2-hydroxyethyl methacrylate (HEMA). Herein, we investigated the photocurable polymer solution (GE-BTHE mixture) containing GE-BTHE, poly(ethylene glycol) diacrylate (PEGDA), chitosan, and methylene blue (MB), with antimicrobial functions and photodynamic antimicrobial chemotherapy for wound dressing. This photocurable polymer solution was found to have fast film-forming property attributed to the photochemical reaction between GE-BTHE and PEGDA, as well as the antibacterial activity in vitro attributed to the ingredients of chitosan and MB. Our in vivo results also demonstrated that untreated wounds after 3 days had the same scab level as the GE-BTHE mixture-treated wounds after 20 s of irradiation, which indicates that the irradiated GE-BTHE mixture can be quickly transferred into artificial scabs to protect wounds from an infection that can serve as a convenient excisional wound dressing with antibacterial efficacy. Therefore, it has the potential to treat nonhealing wounds, deep burns, diabetic ulcers and a variety of mucosal wounds.


2018 ◽  
Vol 68 (12) ◽  
pp. 714-722 ◽  
Author(s):  
Mohammad-Reza Norouzi ◽  
Laleh Ghasemi-Mobarakeh ◽  
Hamidreza Gharibi ◽  
Rokhsareh Meamar ◽  
Fatemeh Ajalloueian ◽  
...  

2005 ◽  
Vol 23 (3) ◽  
pp. 245-254 ◽  
Author(s):  
S.A. Abo-El-Enein ◽  
S. Hanafi ◽  
F.I. El-Hosiny ◽  
El-Said H.M. El-Mosallamy ◽  
M.S. Amin

Ordinary Portland cement (OPC) pastes with added superplasticizer were made using water/cement weight ratios of standard consistency. Three types of superplasticizer based on acrylate—poly(ethylene glycol) copolymers were used. The pastes were hydrated for various time lengths and the mechanical characteristics of the hardened cement pastes were studied and related to their pore structures. It was found that the addition of the superplasticizers to OPC improved the mechanical properties of the hardened pastes for all hydration lengths. The addition of such superplasticizers to OPC resulted in a decrease in the specific surface areas and total pore volumes of the hardened superplasticized cement pastes relative to the corresponding hardened neat cement pastes.


2021 ◽  
Vol 17 ◽  
pp. 2729-2764
Author(s):  
Alemayehu Gashaw Woldegiorgis ◽  
Xufeng Lin

In recent years, the synthesis of axially chiral compounds has received considerable attention due to their extensive application as biologically active compounds in medicinal chemistry and as chiral ligands in asymmetric catalysis. Chiral phosphoric acids are recognized as efficient organocatalysts for a variety of enantioselective transformations. In this review, we summarize the recent development of chiral phosphoric acid-catalyzed synthesis of a wide range of axially chiral biaryls, heterobiaryls, vinylarenes, N-arylamines, spiranes, and allenes with high efficiency and excellent stereoselectivity.


2015 ◽  
Vol 132 (31) ◽  
pp. n/a-n/a ◽  
Author(s):  
Cheng-Han Yang ◽  
Szu-Hsien Chen ◽  
Yun-Wen Pan ◽  
Ching-Nan Chuang ◽  
Wen-Chi Chao ◽  
...  

Solar RRL ◽  
2019 ◽  
Vol 3 (10) ◽  
pp. 1900134 ◽  
Author(s):  
Pingli Qin ◽  
Tong Wu ◽  
Zhengchun Wang ◽  
Xiaolu Zheng ◽  
Xueli Yu ◽  
...  

2013 ◽  
Vol 22 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Haryanto ◽  
SeongCheol Kim ◽  
Jeong Hwan Kim ◽  
Jong Oh Kim ◽  
SaeKwang Ku ◽  
...  

2012 ◽  
Vol 114-117 ◽  
pp. 30-34 ◽  
Author(s):  
Zhizhen Zhang ◽  
Jingsheng Li ◽  
Xiaoxia Li ◽  
Houquan Huang ◽  
Lifen Zhou ◽  
...  

2020 ◽  
Vol 46 (3) ◽  
pp. 3456-3463 ◽  
Author(s):  
Zhengwen Ding ◽  
Qiyi Zhang ◽  
Yanan Wu ◽  
Mizhi Ji ◽  
Hong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document