scholarly journals A New Approach to Developing Long-Acting Injectable Formulations of Anti-HIV Drugs: Poly(Ethylene Phosphoric Acid) Block Copolymers Increase the Efficiency of Tenofovir against HIV-1 in MT-4 Cells

2020 ◽  
Vol 22 (1) ◽  
pp. 340
Author(s):  
Ilya Nifant’ev ◽  
Andrei Siniavin ◽  
Eduard Karamov ◽  
Maxim Kosarev ◽  
Sergey Kovalchuk ◽  
...  

Despite the world’s combined efforts, human immunodeficiency virus (HIV), the causative agent of AIDS, remains one of the world’s most serious public health challenges. High genetic variability of HIV complicates the development of anti-HIV vaccine, and there is an actual clinical need for increasing the efficiency of anti-HIV drugs in terms of targeted delivery and controlled release. Tenofovir (TFV), a nucleotide-analog reverse transcriptase inhibitor, has gained wide acceptance as a drug for pre-exposure prophylaxis or treatment of HIV infection. In our study, we explored the potential of tenofovir disoproxil (TFD) adducts with block copolymers of poly(ethylene glycol) monomethyl ether and poly(ethylene phosphoric acid) (mPEG-b-PEPA) as candidates for developing a long-acting/controlled-release formulation of TFV. Two types of mPEG-b-PEPA with numbers of ethylene phosphoric acid (EPA) fragments of 13 and 49 were synthesized by catalytic ring-opening polymerization, and used for preparing four types of adducts with TFD. Antiviral activity of [mPEG-b-PEPA]TFD or tenofovir disoproxil fumarate (TDF) was evaluated using the model of experimental HIV infection in vitro (MT-4/HIV-1IIIB). Judging by the values of the selectivity index (SI), TFD exhibited an up to 14-fold higher anti-HIV activity in the form of mPEG-b-PEPA adducts, thus demonstrating significant promise for further development of long-acting/controlled-release injectable TFV formulations.

e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Stanislaw Penczek ◽  
Krzysztof Kaluzynski ◽  
Julia Pretula ◽  
Zbigniew Bartczak ◽  
Wojciech Zielenkiewicz ◽  
...  

AbstractInorganic particles of 3 CaO ⋅ SiO2 were reacted in water dispersion with dihydrophilic ionic-nonionic block copolymers, and the heat effect of interaction was measured by calorimetry. The ionic block was constituted of monoesters of phosphoric acid or alkyl phosphonic acid, both built on the polyglycidol block, attached to the poly(ethylene oxide) block. The heat evolved during the interaction is a function of the degree of phosphorylation (phosphonylation). The higher the degree of -OH substitution the stronger the interaction, the latter being stronger for phosphates than for phosphonates.


NANO ◽  
2020 ◽  
Vol 15 (03) ◽  
pp. 2050040 ◽  
Author(s):  
Jia Liu ◽  
Juan Li ◽  
Tingting Liu

In this report, mixed polymeric micelles (MPMs) system self-assembled from two kinds of cholesterol-grafted amphiphilic block copolymers cholesterol modified poly ([Formula: see text]-amino esters)-grafted disulfide poly (ethylene glycol) methyl ether (PAE(-ss-mPEG)-[Formula: see text]-Chol) and poly([Formula: see text]-amino ester)-g-poly(ethylene glycol) methyl ether-cholesterol (PAE-[Formula: see text]-mPEG-Chol) were prepared for drug delivery and controlled release with pH and redox-responsibilities. The self-assembly of two block copolymers was evaluated by measurement of critical micelle concentration (CMC) values using fluorescence spectroscopy. The hydrodynamic diameter, polydispersity index (PDI) and zeta-potential of MPMs in aqueous were recorded by dynamic light scattering (DLS) at different conditions. Doxorubicin (DOX) was efficiently encapsulated in the micellar core by the hydrophobic interaction. The drug loading content (LC) and encapsulation efficacy (EE) of MPMs with different formulations were evaluated. The DOX was released due to the swelling and disassembly of MPMs induced by low pH and high glutathione (GSH) concentrations. The in vitro results demonstrated that drug release rate and cumulative release were obviously dependent on pH values and reducing agents. The results showed that the MPMs could be the potential anticancer drug delivery carriers with pH/redox-triggered drug release profile.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 511 ◽  
Author(s):  
Jingjie Feng ◽  
Weiqiu Wen ◽  
Yong-Guang Jia ◽  
Sa Liu ◽  
and Jianwei Guo

One of the most famous anticancer drugs, paclitaxel (PTX), has often been used in drug controlled-release studies. The polymers derived from bio-compound bile acids and degradable poly(ε-caprolactone) (PCL) form a reservoir and have been used as a drug delivery system with great advantages. Herein, we grafted poly(N,N-diethylaminoethyl methacrylate) and poly(poly(ethylene glycol) methyl ether methacrylate) into the bile acid-derived three-armed macroinitiator CA-(PCL)3, resulting in the amphiphilic block copolymers CA-(PCL-b-PDEAEMA-b-PPEGMA)3. These pH-responsive three-armed block copolymers self-assembled into micelles in aqueous solution and PTX was encapsulated into the micellar core to form PTX-loaded micelles with a drug loading of 29.92 wt %. The micelles were stable in PBS at pH 7.4 and showed a pH-triggered release behavior of PTX under acidic environments, in which 55% of PTX was released at pH 5.0 in 80 h. These cholic acid-based functionalized three-armed block polymers present good biocompatibility, showing great potential for drug controlled-release.


2020 ◽  
Vol 14 (2) ◽  
pp. 119-127
Author(s):  
Mitali Patel ◽  
Ruhi Shah ◽  
Krutika Sawant

Background: Efavirenz, an anti-HIV agent, has a noticeable place in the HAART regimen for the treatment and maintenance therapy of AIDS. However, its poor water solubility accounts for hindered absorption and bio-distribution upon administration. This results in its low and variable bioavailability. To circumvent these limitations, various novel formulations of Efavirenz have been investigated in order to mitigate its drawbacks and draw out its maximum therapeutic effect. Methods: Numerous formulations explored to overcome the drawbacks of Efavirenz include modified/ controlled-release tablets, solid dispersions, polymeric nanoparticles, dendrimers, surface-engineered nanoparticles and various other nanoformulations. Moreover, combinatorial formulations of Efavirenz with other Anti-HIV drugs have also been reported to overcome the problem of Drug-Resistance. Results: The nanoformulation based strategies, owing to their ability to provide controlled release profile and targeted drug delivery were found to augment bioavailability, therapeutic efficacy and reduce the side effects of the Efavirenz. Conclusion: This review pivots around the challenges and recent advances in the delivery of Efavirenz with particular emphasis on novel formulations including its patents.


Author(s):  
Garima Joshi ◽  
Krutika Sawant ◽  
Mitali Patel ◽  
Deepak Chaudhary

: Nanotechnology is one of the emerging fields in the drug delivery for targeting the drug to the site of action. The polymeric nanoparticles as drug delivery systems have gained importance for the last few decades. They offer advantages over liposomes, dendrimers, emulsions etc. Surface engineering of polymeric nanoparticles is widely utilized to effectively target the cells in various diseases such as cancer, HIV infection. Surface modified nanoparticles offer various advantages such as targeted drug delivery, reduction in side effects, dose reductionand improved therapeutic efficacy. Moreover, they can aid in improving physical and biochemical properties, pharmacokinetic and pharmacodynamic profiles of drug. Surface modified polymeric nanoparticles can provide targeted delivery of drugs into specific cells, especially when targets are intracellular localized. This approach would be more advantageous for the delivery of various anticancer, anti inflammatory, anti HIV drugs for more effective therapy. This review focuses on the techniques used for fabrication of polymeric nanoparticles, material used for surface modification and their applications.


Sign in / Sign up

Export Citation Format

Share Document