scholarly journals Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart

2021 ◽  
Vol 22 (15) ◽  
pp. 7764
Author(s):  
Jaslyn Johnson ◽  
Sadia Mohsin ◽  
Steven R. Houser

Cardiac diseases such as myocardial infarction (MI) can lead to adverse remodeling and impaired contractility of the heart due to widespread cardiomyocyte death in the damaged area. Current therapies focus on improving heart contractility and minimizing fibrosis with modest cardiac regeneration, but MI patients can still progress to heart failure (HF). There is a dire need for clinical therapies that can replace the lost myocardium, specifically by the induction of new myocyte formation from pre-existing cardiomyocytes. Many studies have shown terminally differentiated myocytes can re-enter the cell cycle and divide through manipulations of the cardiomyocyte cell cycle, signaling pathways, endogenous genes, and environmental factors. However, these approaches result in minimal myocyte renewal or cardiomegaly due to hyperactivation of cardiomyocyte proliferation. Finding the optimal treatment that will replenish cardiomyocyte numbers without causing tumorigenesis is a major challenge in the field. Another controversy is the inability to clearly define cardiomyocyte division versus myocyte DNA synthesis due to limited methods. In this review, we discuss several studies that induced cardiomyocyte cell cycle re-entry after cardiac injury, highlight whether cardiomyocytes completed cytokinesis, and address both limitations and methodological advances made to identify new myocyte formation.

2017 ◽  
Vol 123 (6) ◽  
pp. 1676-1681 ◽  
Author(s):  
Wataru Kimura ◽  
Yuji Nakada ◽  
Hesham A. Sadek

The underlying cause of systolic heart failure is the inability of the adult mammalian heart to regenerate damaged myocardium. In contrast, some vertebrate species and immature mammals are capable of full cardiac regeneration following multiple types of injury through cardiomyocyte proliferation. Little is known about what distinguishes proliferative cardiomyocytes from terminally differentiated, nonproliferative cardiomyocytes. Recently, several reports have suggested that oxygen metabolism and oxidative stress play a pivotal role in regulating the proliferative capacity of mammalian cardiomyocytes. Moreover, reducing oxygen metabolism in the adult mammalian heart can induce cardiomyocyte cell cycle reentry through blunting oxidative damage, which is sufficient for functional improvement following myocardial infarction. Here we concisely summarize recent findings that highlight the role of oxygen metabolism and oxidative stress in cardiomyocyte cell cycle regulation, and discuss future therapeutic approaches targeting oxidative metabolism to induce cardiac regeneration.


2021 ◽  
Author(s):  
Francesca Murganti ◽  
Wouter Derks ◽  
Marion Baniol ◽  
Irina Simonova ◽  
Katrin Neumann ◽  
...  

One of the major goals in cardiac regeneration research is to replace lost ventricular tissue with new cardiomyocytes. However, cardiomyocyte proliferation drops to low levels in neonatal hearts and is no longer efficient in compensating for the loss of functional myocardium in heart disease. We generated a human induced pluripotent stem cell (iPSC)-derived cardiomyocyte-specific cell cycle indicator system (TNNT2-FUCCI) to characterize regular and aberrant cardiomyocyte cycle dynamics. We visualized cell cycle progression in TNNT2-FUCCI and found G2 cycle arrest in endoreplicating cardiomyocytes. Moreover, we devised a live-cell compound screening platform to identify pro-proliferative drug candidates. We found that the alpha-adrenergic receptor agonist clonidine induced cardiomyocyte proliferation in vitro and increased cardiomyocyte cell cycle entry in neonatal mice. In conclusion, the TNNT2-FUCCI system is a valuable tool to characterize cardiomyocyte cell cycle dynamics and identify pro-proliferative candidates with regenerative potential in the mammalian heart.


2020 ◽  
Vol 115 (5) ◽  
Author(s):  
Naisam Abbas ◽  
Filippo Perbellini ◽  
Thomas Thum

Abstract Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.


2019 ◽  
Vol 133 (11) ◽  
pp. 1229-1253 ◽  
Author(s):  
Marina Leone ◽  
Felix B. Engel

Abstract One great achievement in medical practice is the reduction in acute mortality of myocardial infarction due to identifying risk factors, antiplatelet therapy, optimized hospitalization and acute percutaneous coronary intervention. Yet, the prevalence of heart failure is increasing presenting a major socio-economic burden. Thus, there is a great need for novel therapies that can reverse damage inflicted to the heart. In recent years, data have accumulated suggesting that induction of cardiomyocyte proliferation might be a future option for cardiac regeneration. Here, we review the relevant literature since September 2015 concluding that it remains a challenge to verify that a therapy induces indeed cardiomyocyte proliferation. Most importantly, it is unclear that the detected increase in cardiomyocyte cell cycle activity is required for an associated improved function. In addition, we review the literature regarding the evidence that binucleated and polyploid mononucleated cardiomyocytes can divide, and put this in context to other cell types. Our analysis shows that there is significant evidence that binucleated cardiomyocytes can divide. Yet, it remains elusive whether also polyploid mononucleated cardiomyocytes can divide, how efficient proliferation of binucleated cardiomyocytes can be induced, what mechanism regulates cell cycle progression in these cells, and what fate and physiological properties the daughter cells have. In summary, we propose to standardize and independently validate cardiac regeneration studies, encourage the field to study the proliferative potential of binucleated and polyploid mononucleated cardiomyocytes, and to determine whether induction of polyploidization can enhance cardiac function post-injury.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
C Balbi ◽  
S Bolis ◽  
L Barile ◽  
G Vassalli

Abstract Introduction Nanovesicles known as exosomes (Exo) from cardiac-derived progenitor cells (CPCs) are cardioprotective and improve cardiac function after myocardial infarction; however the mechanisms of benefit are incompletely understood, especially with respect to endogenous cardiomyocytes (CM) renewal. Periostin (POSTN), a secreted extracellular matrix protein, is emerging as a matricellular factor that can trigger CM proliferation. We have identified POSTN as a protein secreted by CPC and enriched in their exosomal fraction. Purpose We sought to determine whether Exo-CPC can induce proliferation of CM and to explore the role of exosomal POSTN in inducing reentry of CM into the cell cycle. Methods Exo were isolated from CPC condioned medium by density gradient ultracentrifugation. Fractions were analyzed by Western blotting for the presence of POSTN as well as specific Exo markers (TSG101, CD9). POSTN-depleted Exo (ExoCPC_SiPOSTN) were obtained by transfecting CPC with specific siRNA. Active DNA synthesis was assessed on primary cell culture of rat neonatal CM by EdU incorporation. H9C2 cardiomyocytic cells were used to assess by real-time RT-PCR the expression of downstream genes Hippo/Yes-associated protein (YAP) signaling pathway. Results Western blotting analysis allowed to specifically determining the presence of Exo markers and POSTN in the different fractions of secreted vesicles. Smaller fractions (f1-f3) have the highest amount of TSG101 and CD9 as well as POSTN, thus suggesting that CPC secrete POSTN associated with Exo. The silencing of POSTN in cells resulted in a 60% reduction of Exo-associated POSTN compared to naïve ExoCPC. ExoCPC but not ExoCPC_SiPOSTN, were able to increase phosporylation of AKT and ERK in H9C2 cells. YAP phosporylation and its degradation was decreased resulting in the activation of the downstream gene AurBKinase. By real-time PCR, AurBKinase expression was increased by 2.6 folds with ExoCPC and 1.5 folds with ExoCPC_SiPOSTN compared to cells not exposed to Exo. ExoCPC were able to increase 1.5 fold EdU incorporation in cardiac troponin-positive primary rat CM. ExoCPC_SiPSTN did not affect proliferation. Schematic figure Conclusion These results suggest that POSTN may promote cardiomyocyte proliferation through the direct activation of the AKT/ERK/Hippo-Yap pathway. Exosomes released by CPC are an important source of POSTN and may have a potential for promoting cardiac regeneration. Acknowledgement/Funding This work has been supported by The Swiss National Science Foundation under grant n° 310030_169194


2021 ◽  
Vol 22 ◽  
Author(s):  
Ubaid Tariq ◽  
Shravan Kumar Uppulapu ◽  
Sanjay K Banerjee

: Glycogen synthase kinase 3 (GSK-3) is a ubiquitously expressed serine/threonine kinase and was first identified as a regulator of glycogen synthase enzyme and glucose homeostasis. It regulates cellular processes like cell proliferation, metabolism, apoptosis and development. Recent findings suggest that GSK-3 is required to maintain the normal cardiac homeostasis that regulates cardiac development, proliferation, hypertrophy and fibrosis. GSK-3 is expressed as two isoforms, α and β. Role of GSK-3α and GSK-3β in cardiac biology is well documented. Both isoforms have common as well as isoform-specific functions. Human data also suggests that GSK-3β is downregulated in hypertrophy and heart failure, and acts as a negative regulator. Pharmacological inhibition of GSK-3α and GSK-3β leads to the endogenous cardiomyocyte proliferation and cardiac regeneration by inducing the upregulation of cell cycle regulators, which results in cell cycle re-entry and DNA synthesis. It was found that cardiac specific knockout (KO) of GSK-3α retained cardiac function, inhibited cardiovascular remodelling and restricted scar expansion during ischemia. Further, knockout of GSK-3α decreases cardiomyocyte apoptosis and enhances its proliferation. However, GSK-3β KO also results in hypertrophic myopathy due to cardiomyocyte hyper-proliferation. Thus GSK-3 inhibitors are named as a double-edged sword because of their beneficial and off target effects. This review focuses on the isoform specific functions of GSK-3 that will help in better understanding about the role of GSK-3α and GSK-3β in cardiac biology and pave a way for the development of new isoform specific GSK-3 modulator for the treatment of ischemic heart disease, cardiac regeneration and heart failure.


2017 ◽  
Vol 131 (24) ◽  
pp. 2919-2932 ◽  
Author(s):  
Dezhong Yang ◽  
Wenbin Fu ◽  
Liangpeng Li ◽  
Xuewei Xia ◽  
Qiao Liao ◽  
...  

After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson’s trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU+ cardiomyocytes. Meanwhile, CGX1321 increased Ki67+ and phosphohistone H3 (PH3+) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1. CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
Y S Tseng ◽  
M Y You ◽  
Y C Hsu ◽  
K C Yang

Abstract Background Although the adult mammalian heart fails to regenerate after injury, it is known that newborn mice within a week have full cardiac regenerative capacity. The molecular determinants underlying the disparate regenerative capacity between neonatal and adult mice, however, remain incompletely understood. Exploiting RNA sequencing in isolated cardiomyocytes from neonatal and adult mouse heart, we identified Cdh2, which encodes the adherence junction protein N-cadherin, as a potential novel mediator of cardiac regeneration. Cdh2 expression levels were much higher in neonatal, compared with adult, cardiomyocytes and showed a strong positive correlation with that of multiple cell cycle genes. N-cadherin has been reported to be essential for embryonic cardiac development; its role in cardiac regeneration, however, remains unknown. Purpose To determine the role of Cdh2 (N-cadherin) in cardiac regeneration and to investigate the underlying molecular mechanisms. Methods Apical resection in postnatal day 1 mice was used as a cardiac regenerative model. The in vitro gain/loss-of function studies of Cdh2/N-cadherin was performed in postnatal day 1 neonatal mouse cardiomyocytes (P1CM) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM). N-cadherin inhibitor exherin was used to study the effects of N-cadherin in vivo. Results Comparing to sham-operated control, Cdh2 was significantly upregulated in mouse cardiac apex and border zone following apical resection, which was accompanied with increased cardiomyocyte proliferation activity. In vitro, knocking down Cdh2 or inhibition of N-cadherin activity with exherin in P1CM significantly reduced the proliferative activity of cardiomyocytes, whereas overexpression of Cdh2 markedly increased the proliferation of P1CM. In addition, forced expression of Cdh2 resulted in significant upregulation of multiple cell cycle genes, including Ccnd1 (Cyclin D1) and Pcna (proliferating cell nuclear antigen), in P1CM. In vivo inhibition of N-cadherin in P1 neonatal mice with exherin following apical resection impaired cardiac regeneration and increased scar formation (Figure). Knocking down CDH2 in human iPSC-CMs significantly reduced the proliferative activity and the expression levels of cell cycle gene CCND1 in iPSC-CMs. Mechanistically, we demonstrated that the pro-mitotic effects of N-cadherin in cardiomyocytes were mediated, at least partially, by stabilizing β-catenin, a pro-mitotic transcription factor, through direct interaction with its cytoplasmic domain and/or inactivation of GSK3β, a critical component of β-catenin destruction complex. N-Cad blocker impairs heart regeneration Conclusion Our study uncovered a previously unrecognized role of Cdh2 (N-cadherin) in cardiomyocyte proliferation and cardiac regeneration. Enhancing cardiac expression or activity of N-cadherin, therefore, could be a potential novel therapeutic approach to promote cardiac regeneration and restore cardiac function in adult heart following injury.


Cell ◽  
2018 ◽  
Vol 173 (1) ◽  
pp. 104-116.e12 ◽  
Author(s):  
Tamer M.A. Mohamed ◽  
Yen-Sin Ang ◽  
Ethan Radzinsky ◽  
Ping Zhou ◽  
Yu Huang ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Masahide Sakabe ◽  
Aishlin Hassan ◽  
Mei Xin

Introduction: The regeneration potential in the adult mammalian heart is very limited due to the cessation of cardiomyocyte proliferation shortly after birth. Recent studies have revealed that changes after birth such as metabolic state, oxygen level, cardiomyocyte structure and maturity, immune system and polyploidy are among the factors contributing to the loss of the regenerative potential in the heart. The mechanisms that regulate the cardiac regenerative window are not well understood. Here we report that G-protein mediated signaling regulates Hippo-YAP in neonatal cardiomyocyte proliferation and heart regeneration through Rho activity. Hypothesis: Gas encoded by the Gnas gene, a downstream effector of beta-adrenergic receptor (βAR) inhibits cardiomyocyte proliferation via regulation of YAP activity. Methods: We pharmacologically inhibited the G protein coupled receptor mediated β adrenergic signaling with a β-blocker (metoprolol) at early postnatal stages, and genetically by deleting Gnas in the heart with αMHC-Cre. We accessed the cardiomyocyte proliferation, heart regeneration in these mice and elucidated molecular mechanisms. Results: We found that β-blocker enhanced cardiomyocyte proliferation and promoted cardiac regeneration post cardiac injury with improved cardiac function. Consistent with β-blocker treated mice, mice lacking Gnas in cardiomyocytes exhibited enlarged hearts with an increase in cardiomyocyte proliferation. RNA-seq analysis revealed that these cardiomyocytes maintained an immature status even at young-adult age. The genes associated with mitochondrial oxidative metabolism, the major energy source for mature cardiomyocytes, were downregulated. Moreover, YAP activity was upregulated in both cases. We also found that loss of Gαs function caused upregulation of RhoA activity, and inhibitor of Rho signaling pathway suppressed the YAP activity in cardiomyocytes. Conclusions: Our study reveals that Gαs negatively regulate cardiomyocyte proliferation and provides mechanistic insight for β-blocker treatment as a strategy for inducing cardiac dedifferentiation and proliferation in injured heart.


Sign in / Sign up

Export Citation Format

Share Document